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Stochastic Resonance Driven by Time-Modulated Neurotransmitter Random Point Trains
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Information transmitting by temporally modulated random point trains, such as neurotransmitter
quanta and spikes, which are neither additive signal and noise nor diffusion approximated additive
signal and noise, is studied. We demonstrate that tuning the input train’s average rate can optimize the
response of an integrate-and-fire model neuron to a signal modulated point train. The characteristics of
this phenomenon and its biological significance are discussed.
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FIG. 1. Potential variation V�t� and spike output y�t� of a
spike train S�t� driven integrate-and-fire model.
Stochastic resonance (SR), which was first proposed by
Benzi et al. to explain the possible mechanism of the
periodic ice ages, is a phenomenon that signal expression
can be surprisingly optimized by tuning noise level [1].
Since the concept of SR was introduced, extensive atten-
tion has been paid to the response of a nonlinear system to
signal with additive noise [2–7]. For neurons communi-
cating with pulse trains, only similar situations were
studied in which the drivings are either periodic pulses
plus noise such as Poissonian pulse train [8] or trains of
excitatory and inhibitory pulses with infinitesimal am-
plitude which can be approximated as analogous additive
signal and noise [9,10].

However, a general situation is that a driving pulse train
is a stochastic excitatory point train with rates modulated
by the information it conveyed, wherein a stochastic
point train is not only an information conveying medium
but also a noise source at the same time and cannot be
divided into additive signal and noise. Consider, for in-
stance, the neurotransmitter trains which are released in
quantum from inner hair cells and drive the auditory
neurons, and the auditory neuron produced spike trains
summed in the cochlear nucleus in the auditory system.
Both the neurotransmitter trains and the auditory spike
trains are random point drivings with rates modulated
indirectly by stimulating sound [11]. Modulated stochas-
tic point trains like these, also known as all-or-none event
trains, are general information expressing form in the
brain. How the random neural signal expresses determin-
istic information and how the random point expressed
information is transmitted and processed are intriguing,
and attract increasing attention [12–16]. Rate code and
temporal code are focuses concerned. Point train coded
temporal information’s optimal transmission by tuning
independent additive noise has been shown before [8,17].
By tuning the average point rate instead here, random
points coded temporal information’s optimal transmis-
sion is demonstrated.

In the present study, we propose a concept of random
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random point train expressed signal can be transmitted
optimally by means of stochastic resonance.

We consider the classic integrate-and-fire neuron
model. Under the threshold Vthr, the neuron membrane
potential V�t� is controlled by

dV�t�
dt

� �
V�t�
�m

� S�t�; (1)

where �m is the time constant of a neuron, and S�t� is the
driving. When the membrane potential V�t� reaches
the threshold Vthr, a spike is fired by the neuron and the
membrane potential resets to zero, from where the mem-
brane potential resumes varying under the control of
Eq. (1). The output of the neuron y�t� is

y�t� �
�
1; V � Vthr

0; V � Vthr
(2)

and can be expressed as y�t� �
P

tn
�t� tn�, where tn is
the moment the neuron is spiking.

The driving S�t�, contrary to the traditional additive
signal and noise, is an inhomogeneous Poissonian point
train with modulated intensity ��t�, and can be expressed
by the 
 function as S�t� � V0

P
tm
�t� tm�, where

V0, less than threshold Vthr, is the amplitude of the
point driving and tm is the stochastic instant when a
driving neurotransmitter or spike is arriving. Figure 1
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FIG. 2. Example of calculated (a) interspike interval histogram, (b) period histogram, (c) autocorrelation, and (d) power spectral
density. ��t� � A� B cos�2�ft�, A � 7, B � 5, T � �m, f � 1=�m, and V0 � 0:1Vthr. Time is scaled in �m. Amplitude is scaled in
Vthr. The number of phase bins in a period is 20 in the period histogram.
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FIG. 3. Signal to noise ratio of output spike train. ��t� � A�
B cos�2�ft�, B � 5, T � �m, f � 1=�m, and V0 � 0:1Vthr.
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demonstrates the processes of the membrane potential
varying and the spike producing under the driving of
S�t�. When a point stimulus arrives, the potential in-
creases in a step of V0. When the potential reaches the
threshold Vthr, a spike is produced and the potential resets
to zero, otherwise, the potential decreases in an exponen-
tial way until the next stimulus arrives.

In general, the intensity of a random point process,
��t�, can be expressed as ��t� � a�

P
nan sin�n2�ft� �

bn cos�n2�ft�, where f is the frequency of the signal to be
conveyed. For the reason of convenience, consider a
simple situation ��t� � A� B cos�2�ft�, where A � B.
This point process has a noise level AV2

0 determined by its
average rate A and a signal level 1

2B
2V2

0 determined by
modulating amplitude B [18,19].

For Eq. (1), diffusion approximation [9,10] is not suit-
able because V0 is not infinitesimal, but, for example, in
auditory neuron, is one of a few parts of Vthr [20]. Up to
now, to our knowledge, there is no analytical solution
to probability density of the first passage time of
the integrate-and-fire model driven by random point pro-
cess even with a constant intensity �. We demonstrate
the response property of the integrate-and-fire neuron
to random point stimuli with intensity ��t� � A�
B cos�2�ft� by numerical simulation. An Euler discreti-
zation with time step �t � 10�2�m is used in Eq. (1) to
get the output instant tn during a period of 5� 106�t.
Then the interspike interval histograms, the period histo-
grams (distribution of a spike number in a phase bin,
reflecting probability in which a spike outputs at a differ-
ent phase [21]), and the autocorrelation functions Ryy �
hy�t�y�t� ��i of output spike trains are computed. Fourier
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transforming the autocorrelation Ryy � hy�t�y�t� ��i
gets the power spectral density Syy�f� of an output spike
train. Figure 2 is an example of the calculation. The
output spike interval histogram shows, in Fig. 2(a), that
the output spike intervals are stochastic but tend to be a
multiple of the period T of the conveyed signal. The
period histogram shows, in Fig. 2(b), that the spikes are
produced at a random time but tend to appear at a certain
phase; that is, the output spikes are phase locked.
Figures 2(c) and 2(d) show that the output spike train is
temporal correlated and has a main component with the
same frequency of the conveyed signal. Components with
multiple frequencies of the conveyed signal have much
smaller amplitudes than the main component. The height
of background around the main component in Fig. 2(d) is
the noise level of the output spike train. The output spike
208103-2
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FIG. 5. Optimal rate Aoptimal’s dependence on spike amplitude
V0. Because ��t� � 0, B 
 A. The dependence of Aoptimal on
spike amplitude V0 means that, for a certain value of V0, the
modulating amplitude A is needed to be small enough to
observe increase of output SNR with an input noise level
increase. V0 is scaled in Vthr. Modulating frequency f � 1=�m.

FIG. 4. Resonance curves of signals with different frequen-
cies. ��t� � A� B cos�2�ft�, B � 3, and V0 � 0:2Vthr.
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train’s SNR (signal-to-noise ratio) is the level ratio of
signal to background noise in the power spectral density
of the output spike train.

In a certain range of parameters, there is an optimal
average point rate, Aoptimal, that is, an optimal input noise
level, which produces the largest output SNR. Figure 3
shows an example of this phenomenon similar to the
traditional stochastic resonance, which we call random
point driven stochastic resonance.

It seems that this kind of optimal signal transmission
should occur when the most possible interspike interval is
equal to the period of transmitted signal, and that the
random point driven stochastic resonance should be a
bona fide resonance because of the most possible inter-
spike interval’s dependence on the average rate A. How-
ever, our results show, in Fig. 4, that signals with different
frequencies have an identical optimal A independent of
signal frequency. Our results show optimal A depends on
the ratio of spike amplitude V0 to firing threshold Vthr

instead.
Figure 5 shows that with increasing V0, the optimal A

decreases. The larger V0 is, the smaller the optimal A is.
As an inhomogeneous Poissonian process, ��t� � 0, and
B 
 A. For a certain value of V0, only when modulating
amplitude B is smaller than a certain value, the neural
signal transmitting performance can be improved by
increasing A. So the optimal signal transmission is also
limited to a weak signal, in addition to the limit V0 <
Vthr, which the traditional stochastic resonance driven by
the additive signal and noise is subject to [8].

The present study shows that random points expressed
temporal information can be transmitted optimally
through a nonlinear system by tuning the average rate,
that is, the noise strength of the random point train
medium. This is heuristic for understanding the informa-
tion coding and processing mechanism in the neural
system. For example, our results mean that the efficient
transmission of the random point train coded information
needs a point train with an optimal average rate, which
does not express information, but just plays a role of
208103-3
information transmission media. The spontaneous neural
activities may provide the optimal media point trains.
One of the supporting factors is that the auditory neurons’
responses to near threshold sound stimuli tend to be
phase-locked fires instead of an increase in the average
spike rates, and the sound intensity threshold for the
change of the spiking temporal pattern is far below the
intensity resulting in an increase of average rate [22].
Point trains bearing no information, such as the sponta-
neously released neurotransmitter trains of inner hair
cells and the spontaneous auditory spike trains which
exist when no sound stimuli are applied, may not be noise
sources limiting our perception, but optimal point trains
sensitizing our perception.
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