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Effective Membrane Model of the Immunological Synapse
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The immunological synapse is a patterned collection of different types of receptors and ligands that
forms in the intercellular junction between T cells and antigen presenting cells during recognition. The
synapse is implicated in information transfer between cells, and is characterized by different spatial
patterns of receptors at different stages in the life cycle of T cells. We obtain a minimalist model that
captures this experimentally observed phenomenology. A functional renormalization group analysis
provides further insights.
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to a transition from synaptic patterns characteristic of
mature T cells to those observed during thymocyte selec-
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A key event during activation of the adaptive immune
response is recognition of cells [antigen presenting cells
(APCs)] that display peptides derived from foreign anti-
gens on their surface by T lymphocytes (T cells). Recent
experiments [1] have vividly demonstrated that during
this recognition process a highly organized pattern of
different types of receptors and ligands forms in the
intercellular junction between T cells and APCs. This
recognition motif is several microns in diameter, and
since it is implicated in information transfer between
the cells, it is called the immunological synapse. For-
mation of a synapse is also characteristic of an earlier
stage in the life cycle of T cells. Immature T cells (thy-
mocytes) are selected in the thymus so that they are not
activated by peptides derived from the organism itself. In
the thymus, thymocytes interact with cells that display
self-peptides on their surface. Thymocytes that bind
strongly are deleted by apoptosis. The synapses formed
during thymocyte selection are distinctly different in
character [2] from those observed during mature T cell
activation. Understanding the mechanisms via which syn-
apses form under different circumstances and the biologi-
cal purpose of creating different spatial patterns of cell
surface receptors are active areas of research. In addition
to the biological significance, an understanding of these
issues may also inspire the creation of synthetic mimics
that could carry out biomimetic recognition tasks which
could be useful in applications such as targeted drug
delivery.

In this Letter, starting from a model proposed by Qi
et al. [3], we develop a minimalist model that captures
some of the essential physics of synapse formation when
apposing membranes contain complementary pairs of
receptors and ligands. The model allows us to calculate
a phase diagram which delineates the conditions that lead
0031-9007=03=91(20)=208101(4)$20.00 
tion. This phase diagram may serve as a guide for the
design of synthetic analogs.

Consider two membranes containing complementary
pairs of receptors and ligands. The intramembrane motion
of receptors and ligands is determined either by diffusion
or a directed velocity toward the center of the junction
[4]. Complementary receptors and ligands can bind to
each other if apposed. Different receptor-ligand com-
plexes have different topographical size [5], and hence
the rate of association depends upon local intermembrane
separation. The receptor-ligand complexes also dissociate
at a prescribed rate. The pertinent equations are

@Cji
@t

�Djir
2Cji�k

on
i �z�C

1
i C

2
i �k

off
i Ci�r�Vji ;

@Ci
@t

�Dir�

�
rCi�

1

kBT
Cir

F
Ci

�
�koni �z�C

1
i C

2
i �k

off
i Ci:

(1)

The subscript i denotes different receptor-ligand com-
plexes; Cji denotes concentration of a free receptor or
ligand in membrane j � 1; 2 that can form the ith com-
plex. For the T cell system there are two types of com-
plementary receptors and ligands (TCR-MHCp and
LFA1-ICAM1); C1 � CTM, C1

1 � CTCR, C2
1 � CMHC,

C2 � CLI, C1
2 � CLFA1, C2

2 � CICAM1. z is the local inter-
membrane separation. The different species diffuse with
the corresponding diffusion coefficients D. TCR may
have a directed velocity due to cytoskeletal motion [4].
Since small values of ~VV do not change the qualitative
physics [6], for simplicity we do not consider this further
in this Letter. The binding and dissociation chemical
reactions are controlled by the rate constants koni �z� and
koffi . The local intermembrane separation, z, evolves ac-
cording to a time-dependent Ginzburg-Landau equation,
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FIG. 1. The effective potential V�z� in Eq. (6).
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where M is a phenomenological parameter for the rate
at which membrane shapes respond to changes in the free
energy, F�
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first two terms are due to costs associated with deforming
the membranes: If one of the membranes is supported and
undeformed, � and � are the surface tension and bending
rigidity of the free membrane; for similar membranes
they are half the corresponding parameters for each
membrane. B1�z� and B2�z� denote, respectively, the
bond energy gained from forming TCR-MHCp and
LFA1-ICAM1 complexes for a specific intermembrane
separation z.

We calculate the joint dynamics of the intermembrane
separation z�~rr; t� and the receptor-ligand complex concen-
trationsCTM� ~rr; t� and CLI�~rr; t� in the intercellular junction
in order to explore the dynamics of synapse formation.We
focus on the slow modes of the system to study long time
pattern formation. Membrane deformations on length
scales shorter than
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p

 0:75 �m are highly unfav-

orable, and receptor/ligand clusters of dimensions
smaller than this are not observed in experiments [1,2]
or numerical solutions [3]. The time scale for membrane
shape fluctuations of wave number q <
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p
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1=�M�q2�. For the parameters used here, 1=�M�q2� >
1=koff for membrane deformations on length scales larger
than 0:2 �m, which is smaller than the natural cutoff
length of 0:75 �m. Thus, for a given membrane shape,
the species concentrations are given by local equilibrium
conditions
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Substituting Eq. (3) in Eq. (2) obtains model A dynamics
[Eq. (2)] for the order parameter z with an effective free
energy functional
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The reduction of the full set of equations to one deter-
mining the separation z is reminiscent of the elimination
of counterions in constructing the Poisson–Boltzmann
equation, where the concentration of counterions is ob-
tained from the Boltzmann weight of a potential, itself
determined self-consistently from the counterion charge
profile. Here z plays the role of the potential, while the
protein complexes are analogous to the counterions.

Bound receptor-ligand complexes do not favor mem-
brane shape changes that deform the bond from its natural
length. We thus use a harmonic approximation for the
functional form of the bond elasticity energy, i.e., Bi�z� �
B0
i � �i�z� zi�2=2. The maximal bond energies B0

i can be
absorbed into Kon=Koff . For the T cell system z1 � zTM �
15 nm and z2 � zLI � 42 nm [5,7], with corresponding
208101-2
‘‘spring constants’’ �i given below. With this approxima-
tion, the dynamical Eq. (4) takes the form (measuring
time in units such that M � 1)
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with an effective potential
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In writing Eq. (6) we have assumed that  2 � kBT=�,
which is appropriate if the curvature of the receptor-
ligand interaction potential is the same in the bound state
and at the activation barrier. Other assumptions do not
alter the qualitative physics. The parameters C�

i �
�Kon

i =K
off
i �C1

i C
2
i , i � 1; 2 represent the number of com-

plexes (TCR-MHCp and LFA1-ICAM1, respectively)
formed if the intermembrance separation equals the cor-
responding optimal bond separation. As depicted in Fig. 1,
the effective potential has two minima corresponding to
the two possible bonds. Negative separations are pre-
vented by a large energy cost kBTc� 1 (hard wall in
simulations).

Equation (5) was solved numerically by a finite differ-
ence method. Initially, the upper membrane was assigned
a parabolic shape in the contact region, and the inter-
membrance distance was kept constant ( � 50 nm)
outside the contact region. We use experimentally deter-
mined values [8] of � � 700kBT=�m2 and � � 400kBT,
and  1 � 13 nm and  2 � 5 nm [3]. Simulations were
carried out for various ratios of C�

1=C
�
2, and local concen-

trations of the TCR-MHCp and LFA1-ICAM1 were ob-
tained from the intermembrane separation using Eq. (3).

Zero noise.—In the absence of noise (� � 0), Eq. (5) is a
relaxational dynamics toward the minimum of the po-
tential V�z�, subject to the imposed boundary conditions.
208101-2
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For C�
1 > C�

2 the minimum at zTM is deeper, and indeed in
the numerical simulations a central cluster of TCR-MCHp
complex forms quickly in the intercellular contact area.
As the boundary of the contact region is kept at a constant
height close to zLI, the longer LFA1-ICAM1 moves to-
ward the boundary giving rise to a structure very similar
to the final synaptic pattern obtained in the experimental
and numerical studies [1,3,9].

When the concentration C�
1 is below C�

2, the global
minimum of V�z� switches to zLI. In this regime, the
receptor-ligand complex LFA1-ICAM1 concentration
dominates the entire intercellular junction, and no syn-
aptic pattern is formed. In the noiseless (mean-field) limit
the location of the transition between the two patterns is
always at C�

1=C
�
2 � 1.

Finite noise.—In this case, numerical simulations of
Eq. (5) are performed with a random � with zero mean
and variance equal to kBT to mimic thermal noise. For
sufficiently large values of C�

1 � C�
2, we again find that

TCR-MHCp aggregates at the center of the intercellular
junction at long times [Fig. 2(a)]. Very similar synaptic
patterns have been observed [1] for in vivo and in vitro
experiments with mature T cells.

For double positive (DP) thymocytes, the TCR concen-
tration is much lower compared to mature T cells [2]. This
experimental fact corresponds to lower values of C�

1.
When we numerically solve Eq. (5) with C�

1=C
�
2 < fc,
FIG. 2 (color). Right panel: (a) Structure of a mature syn-
apse: TCR-MHCp occupies the central region (represented in
green), surrounded by a ring of LFA1-ICAM1 (shown in red).
(b) Dynamic accumulation of TCR-MHCp (green) at random
places in a sea of LFA1-ICAM1 (red) molecules as observed for
thymocytes. Left panel: Height fluctuations corresponding to
(a) and (b). The green (zTM � 15 nm) and red (zLI � 42 nm)
lines are meant to guide the eye.
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the mature synapse is never formed. Rather, we observe
[see Fig. 2(b)] fluctuating patterns with fleeting clusters of
TCR-MHCp forming at various locations in a sea of
LFA1-ICAM1. Note that this pattern is different in char-
acter from the one observed for C�

1=C
�
2 < 1 in the noise-

less case. Such dynamic patterns have been observed in
recent experiments using DP thymocytes [2], and can be
understood using the simple picture of relaxational mo-
tion in a potential with two minima. As we lower the TCR
concentration, the minimum at z � zTM becomes shal-
lower, and eventually the minimum near z � zLI corre-
sponds to the global equilibrium. However, thermal
fluctuations allow sampling of the region near the mini-
mum at z � zTM. This will favor transient aggregation of
TCR-MHCp at random places. As long as the barrier
between the two minima is not very large, such fluctua-
tions will be frequent.

The effects of thermal fluctuations can be estimated by
expanding V�z� to quadratic order around each of its
minima. The total energy cost of a deformation of wave
number p is given by Ei�p� � �kBT
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The location of the transition between the two classes of
patterns can now be estimated from F�

1 � F�
2. Figure 3

shows that the larger the temperature, the smaller the
value of fc. This ‘‘phase diagram’’ could serve as a guide
for the design of synthetic systems as it shows how to
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FIG. 3. Phase diagram (projection on the C�
1-C�

2 plane) for
physiological temperature T � 37 �C and room temperature
T � 27 �C. C�

1 and C�
2 are measured in units of ��m��2. The

dotted portion of the curves (for low values of C�
1-C�

2) is
conjectured as explained in the text.

208101-3



P H Y S I C A L R E V I E W L E T T E R S week ending
14 NOVEMBER 2003VOLUME 91, NUMBER 20
manipulate conditions such that synaptic patterns char-
acteristic of mature T cells or thymocytes are realized.

Self-consistency of the above quadratic expansion re-
quires that the extent of the fluctuations should be less
than the corresponding variance of the bond. The mean
square width of the interface trapped around z � zi is
given by

W2
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Typical values of C�
1 range from O�10���m��2 for thy-

mocytes to O�100���m��2 in mature T cells. For this
range of parameters, the constant term in the denomina-
tor of Eq. (8) dominates, and the value of the integral can
be estimated to yield that the ratiosW1= 1 andW2= 2 are
of the order of 0.1. Thus, nonlinear corrections to the
above quadratic expansion may be important, and
the phase diagram in Fig. 3, should be regarded as an
approximation.

When anharmonic corrections are significant, an alter-
native approach is to employ a functional renormalization
group (RG) scheme used [10] in the context of wetting
transitions. It consists of the following steps: (1) the
fluctuating field z�x�is divided into two parts correspond-
ing to small wave numbers (0< jpj<�=b) and large
wave numbers (�=b < jpj<�); (2) the large wave num-
ber fluctuations �=b < jpj<� are integrated out to yield
a coarse grained Hamiltonian; and (3) the system is
rescaled to new coordinates x0 � x=b and z0�x0� � z�x�.
(The field z does not need to be scaled in two dimensions.)
The second step can be done only approximately, and a
first order expansion of the potential V�z� leads to the
linear approximation [10]
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The width of the convolution, �b�, is
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Note that � is an irrelevant operator in the RG sense
(vanishing as b�2 under scaling), but may be important
for quantitative comparisons when the bending rigidity is
large.

Applying Eq. (9) to the potential in Eq. (6) yields the
renormalized potential
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The soft wall renormalizes into an error function of width
208101-4
, while the variance of the Gaussian potential is in-
creased by 2. Thus, the bigger the width of the potential,
the deeper it gets due to the fluctuations, as it allows more
flexibility (entropy) in bond formation [11]. For large
values of the width  (highly fluctuating surfaces), the
location of the transition point is shifted to C�

1=C
�
2 �

fc �  2= 1 
 0:38. Because of the factor of b2 in
Eq. (11) the net potential gets stronger under RG, and
the linear approximation eventually breaks down.

While the linear RG approximation is of limited prac-
tical value in this context, it may, however, yield interest-
ing information about the global form of the phase
diagram as the concentrations C�

1 and C�
2 are further

reduced. From the double well shape of the potential,
we anticipate that the overall phase diagram consists of
a line of discontinuous transitions separating preferences
in the synapse for TM or LI bonds. This line is located at
C�
1=C

�
2 � 1 for large concentrations, and moves to

C�
1=C

�
2 
  1= 2 at lower concentrations. It presumably

terminates at an Ising critical point when the fluctuations
in width become of the order of the separation zTM � zLI
between the two minima. Sufficiently small values of C�

1
andC�

2 should also result in an unbinding transition which
is located at C�

1 1 � C�
2 2 /

��������������
kBT=�

p
. It is thus useful to

make a more detailed study of the phase diagram of the
model synapse as well as the dynamic trajectories as
various phase boundaries are approached.
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