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Quantum Communication through an Unmodulated Spin Chain
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We propose a scheme for using an unmodulated and unmeasured spin chain as a channel for short
distance quantum communications. The state to be transmitted is placed on one spin of the chain and
received later on a distant spin with some fidelity. We first obtain simple expressions for the fidelity of
quantum state transfer and the amount of entanglement sharable between any two sites of an arbitrary
Heisenberg ferromagnet using our scheme. We then apply this to the realizable case of an open ended
chain with nearest neighbor interactions. The fidelity of quantum state transfer is obtained as an inverse
discrete cosine transform and as a Bessel function series. We find that in a reasonable time, a qubit can
be directly transmitted with better than classical fidelity across the full length of chains of up to 80
spins. Moreover, our channel allows distillable entanglement to be shared over arbitrary distances.
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FIG. 1. (a) Our quantum communication protocol. Initially
the spin chain is in its ground state in an external magnetic
field. Alice and Bob are at opposite ends of the chain. Alice
places the quantum state she wants to communicate on the spin
nearest to her. After a while, Bob receives this state with some
fidelity on the spin nearest to him. (b) An arbitrary graph of
quire any modulation by external fields (essential for
quantum computation) either. This simplicity in compari-
son to a quantum computer makes it an ideal connector

spins through which quantum communications may be accom-
plished using our protocol. The communication takes place
from the sender spin s to the receiver spin r.
Transmitting a quantum state (known or unknown)
from one place to another is often an important task [1].
It is required, for example, to link several small quantum
processors for large-scale quantum computing. Thus it is
very important to have physical systems which can serve
as channels for quantum communication. We can either
directly transmit a state through the channel, or we can
first use the channel to share entanglement with a sepa-
rated party and then use this entanglement for teleporta-
tion [2]. The ideal channel for long distance quantum
communications is an optical fiber. This requires interfac-
ing a quantum computer (such as arrays of spins or ions)
with optics. For short distance communications (say be-
tween adjacent quantum processors), alternatives to inter-
facing different kinds of physical systems are highly
desirable and have been proposed, for example, for ion
traps [3]. In this Letter, I propose a scheme to use a spin
chain (a 1D magnet, real or simulated) as a channel for
short distance quantum communication. The communi-
cation is achieved by placing a spin encoding the state at
one end of the chain and waiting for a specific amount of
time to let this state propagate to the other end [as shown
in Fig. 1(a)]. This helps to avoid interfacing because both
quantum computers and quantum channels can then be
made by the same physical systems. Moreover, the spin-
chain channel does not require the ability to switch ‘‘on’’
and ‘‘off ’’ the interactions between the spins comprising
the channel, which is often a problem in quantum com-
puter implementations [4,5] (it, however, requires limited
switching of interactions of the spin on which the initial
state is encoded and the spin on which the final state is
received with the rest of the chain at the start and the end
of the protocol, respectively). The channel does not re-
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between quantum computers and realizable well before a
quantum computer.

I will first present the scheme in a general setting for
arbitrary graphs of spins with ferromagnetic Heisenberg
interactions and later proceed to the realizable case of an
open ended chain. Consider the general graph shown in
Fig. 1(b), where the vertices are spins and the edges
connect spins which interact. Say there are N spins in
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the graph and these are numbered 1; 2; . . . ; N. The
Hamiltonian is given by

HG � �
X
hi;ji

Jij ~

i: ~

j �
XN
i�1

Bi
iz: (1)

~

i � �
ix; 

i
y; 


i
z� in which 
ix=y=z are the Pauli ma-

trices for the ith spin, Bi > 0 are static magnetic fields
and Jij > 0 are coupling strengths, and hi; ji represents
pairs of spins. HG describes an arbitrary ferromagnet
with isotropic Heisenberg interactions. We now assume
that the state sender Alice is located closest to the sth
(sender) spin and the state receiver Bob is located closest
to the rth (receiver) spin [these spins are shown in
Fig. 1(b)]. All the other spins will be called channel spins.
It is also assumed that the sender and receiver spins are
detachable from the chain. In order to transfer an un-
known state to Bob, Alice replaces the existing sender
spin with a spin encoding the state to be transferred.
After waiting for a specific amount of time, the unknown
state placed by Alice travels to the receiver spin with some
fidelity. Bob then picks up the receiver spin to obtain a
state close to the the state Alice wanted to transfer. As we
never require individual access or individual modulation
of the channel spins in our protocol, they can be constit-
uents of rigid 1D magnets.

We assume that initially the system is initially cooled
to its ground state j0i � j000 . . . 0i where j0i denotes the
spin down state (i.e., spin aligned along �z direction) of a
spin. This is shown for a 1D chain in the upper part of
Fig. 1(a). I will set the ground state energy E0 � 0 (i.e.,
redefine HG as E0 �HG) for the rest of this Letter. We
also introduce the class of states jji � j00 . . . 010 . . . 0i
(where j � 1; 2; . . . s; . . . r; . . . ;N) in which the spin at the
jth site has been flipped to the j1i state. To start the
protocol, Alice places a spin in the unknown state j ini �
cos��=2�j0i � ei� sin��=2�j1i at the sth site in the spin
chain. We can describe the state of the whole chain at this
instant (time t � 0) as

j
�0�i � cos
�
2
j0i � ei� sin

�
2
jsi: (2)

Bob wants to retrieve this state, or a state as close to it as
possible, from the rth site of the graph. Then he has to
wait for a specific time until the initial state j
�0�i
evolves to a final state which is as close as possible to
cos�2 j0i � ei� sin�2 jri. As 	HG;

PN
i�1 


i
z
 � 0, the state jsi

only evolves to states jji and the evolution of the spin
graph (with �h � 1) is

j
�t�i � cos
�
2
j0i � ei� sin

�
2

XN
j�1

hjje�iHGtjsijji: (3)

The state of the rth spin will, in general, be a mixed state,
and can be obtained by tracing off the states of all other
spins from j
�t�i. This evolves with time as

�out�t� � P�t�j out�t�ih out�t�j � 	1� P�t�
j0ih0j; (4)
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with

j out�t�i �
1���������
P�t�

p �
cos

�
2
j0i � ei� sin

�
2
fNs;r�t�j1i

�
; (5)

where P�t� � cos2 �2 � sin2 �2 jf
N
r;s�t�j

2 and fNr;s�t� �
hrj expf�iHGtgjsi. Note that fNr;s�t� is just the transition
amplitude of an excitation (the j1i state) from the sth to
the rth site of a graph of N spins.

Now suppose it is decided that Bob will pick up the rth
spin (and hence complete the communication protocol) at
a predetermined time t � t0. The fidelity of quantum
communication through the channel averaged over all
pure input states j ini in the Bloch sphere
[�1=4��

R
h inj�out�t0�j inid�] is then

F �
jfNr;s�t0�j cos�

3
�

jfNr;s�t0�j
2

6
�

1

2
; (6)

where � � argffNr;s�t0�g. To maximize the above average
fidelity, we must choose the magnetic fields Bi such that �
is a multiple of 2�. Assuming this special choice of
magnetic field value (which can always be made for any
given t0) to be a part of our protocol, we can simply
replace fNr;s�t0� by jfNN;1�t0�j in Eq. (5). The spin chain
then acts as an amplitude damping quantum channel
[6,7]. It converts the input state �in � j inih inj to �out �
M0�inM

y
0 �M1�inM

y
1 with the operators M0 and M1

(Kraus operators [6]) given by

M0 �

�
1 0
0 jfNr;s�t0�j

	
; M1 �

"
0

����������������������������
1� jfNr;s�t0�j2

q
0 0

#
:

(7)

Now consider the transmission of the state of one
member of a pair of particles in the entangled state
j �i � 1��

2
p �j01i � j10i� through the channel. This is the

usual procedure for sharing entanglement between sepa-
rated parties which precedes teleportation [1]. The output
state �out�t0� �

P
i�0;1I �Mij 

�ih �jI �My
i is

�out�t0��
1

2
f�1�jfNr;s�t0�j2�j00ih00j

��j10i� jfNr;s�t0�jj01i��h10j� jfNr;s�t0�jh01j�g:

The entanglement E of the above state, as measured by
the concurrence [8], is given by

E � jfNr;s�t0�j: (8)

Thus, for any nonzero fNr;s�t0� (however small), some
entanglement can be shared through the channel. This
entanglement, being that of a 2� 2 system, can also be
distilled [9] into pure singlets and used for teleportation.
Later we will estimate fNr;s�t0� for very long open chains
and show that entanglement can be distributed to arbi-
trary distances.

Equations (6) and (8) are exceptionally simple formu-
las for the fidelity of quantum communications and the
207901-2
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FIG. 2 (color online). The bar plot shows the maximum
fidelity F of quantum communication and the curve shows
the maximum sharable entanglement E achieved in a time
interval 	0; 4000=J
 as a function of the chain length N from
2 to 80. The time t0 at which this maxima is achieved varies
with N. The straight line at F � 2=3 shows the highest fidelity
for classical transmission of a quantum state.
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entanglement shared through our spin-graph channel in
terms of single transition amplitude fNr;s�t0�. We note here
that such simple formulas, with slight modifications, will
hold for spin graphs with much wider class of interac-
tions, as long as the state j0i does not evolve [10].

We will now consider a linear open ended spin chain
[Fig. 1(a)], which is the most natural geometry for a
channel. To use an analytically solvable Hamiltonian
HL we assume Jij � �J=2�!i�1;j (nearest neighbor inter-
actions of equal strength) and Bi � B (uniform magnetic
field) for all i and j in Eq. (1) for HG. The eigenstates of
HL, relevant to our problem, are

j ~mmiL � am
XN
j�1

cos


�
2N

�m� 1��2j� 1�

�
jji; (9)

where m � 1; 2; . . . ; N, a1 � 1=
����
N

p
, and am�1 �

���������
2=N

p
with energy (on setting E0 � 0) given by Em � 2B�
2J�1� cosf�N �m� 1�g�. In this case, fNr;s�t0� is given by

fNr;s�t0� �
XN
m�1

hrj ~mmih ~mmjsie�iEmt0 � IDCTs�vm;r� (10)

where vm;r � am cosf �2N �m � 1��2r � 1�ge�iEmt0 and
IDCTs�vm;r� �

PN
m�1 amvm;r cosf

�
2N �m � 1��2s � 1�g is

the sth element of the inverse discrete cosine transform
(IDCT) of the vector fvm;rg.

We now want to study the performance of our protocol
for various chain lengths N with s � 1 and r � N [Alice
and Bob at opposite ends of the chain as shown in
Fig. 1(a)]. Bob has to wait for different lengths of time
t0 for different chain lengths N, in order to obtain a high
fidelity of quantum state transfer. Using Eqs. (6), (8), and
(10), I have numerically evaluated the maximum of
jfNN;1�t0�j (which corresponds to the maxima of both
fidelity and entanglement) for various chain lengths
from N � 2 to N � 80 when Bob is allowed to choose
t0 within a finite (but long) time interval of length Tmax �
4000=J. This evaluation is fast because Eq. (10) allows us
to use numerical packages for the discrete cosine trans-
form. Taking a finite Tmax is physically reasonable, as Bob
cannot afford to wait indefinitely. It is to be understood
that within 	0; Tmax
, the time t0 at which optimal quan-
tum communication occurs varies with N. The maximum
fidelities as a function of N and the maximum amounts of
entanglement sharable (both rounded to three decimal
places) are shown in Fig. 2.

Figure 2 shows various interesting features of our pro-
tocol. The plot also shows that in addition to N � 2,
which is perfect (a well-known fact for the Heisenberg
interaction [11]), N � 4 gives perfect (F � 1:000) quan-
tum state transfer to three decimal places and N � 8
gives near perfect (F � 0:994). The fidelity also exceeds
0.9 forN � 7, 10, 11, 13, and 14. Until N � 21 we observe
that the fidelities are lower when N is divisible by 3 in
comparison to the fidelities forN � 1 andN � 2. The plot
207901-3
also shows that a chain of N as high as 80 exceeds the
highest fidelity for classical transmission of the state, i.e.,
2=3 [12] in the time interval probed by us. Of course the
above results hold only when one is trying to directly
transmit the quantum state over a distance. If one first
shares entanglement through the channel, then the
amount of entanglement E is about 0.45 for an 80 spin
chain. This entanglement can be distilled to pure singlets
and used for perfect teleportation.

We now estimate the entanglement sharable through
chains so large that it is difficult to identify an optimal t0
by numerical search. Hence we will choose t0 according
to a fixed (in general, nonoptimal) prescription. To moti-
vate this choice, we expand e�iEmt0 in Eq. (10) as a Bessel
function series to obtain

E �

��������
X1

k��1

��1�Nk	JN�2Nk�'0� � iJ0N�2Nk�'0�


��������; (11)

where '0 � 2Jt0. Using JN�N � (N1=3� � �2=N�1=3 �
Ai��21=3(� for large N [13] [where Ai��� is the Airy
function] we can prove that we get a maxima of JN�'0�
at t0 � �N � 0:8089N1=3�=2J and at this time

E � 2jJN�'0�j � 1:3499N�1=3; (12)

which ranges from 0.135 forN � 1000 to 1:35� 10�4 for
N � 1012 ( just 3 orders decrease in E for an increase in
length N by 9 orders—a very efficient way to distribute
entanglement). Thus for any finite N, however large, the
chain allows us to distribute entanglement of the order
N�1=3 in a time t0 linear in N.

As an alternate system, we now consider a ring of
2N spins with Hamiltonian HR obtained by using
207901-3
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Jij � �J=2�!i�1;j; Bi � B in Eq. (1) (� is summation
modulo 2N). Alice and Bob access the spins at diametri-
cally opposite sites (s � 1, r � N � 1). In this case, the
2N eigenstates in the one excitation sector are j ~mmiR �

�1=
�������
2N

p
�
P

2N
j�1 e

i��=v��m�1�jjji and

E �jIDFTr�s�um�j�

��������
X1

k��1

��1�NkJN�2Nk�'0�

��������; (13)

where um � exp��iEmt0� and IDFTr�s�um� � �1=2N� �P
2N
m�1 um expfi�2�=2N��r� s��m� 1�g is the �r� s�th

component of the inverse discrete Fourier transform of
the vector fumg. From Eqs. (11) and (13), we numerically
find that the global maxima of E coincide for the line and
the ring. This means that by using a ring you can com-
municate as efficiently over a distance r� s � N as
you can with an open ended line over a distance r� s �
N � 1. An immediate implication is that a four-spin ring
allows perfect communication between diametrically op-
posite sites (because a two-spin line does [11]). This
simple result in quantum information was not known
until now. The coincidence of the maxima also means
that the maxima of E for the line can also be computed by
inverse Fourier transforming fumg.

We now mention potential systems for realization.
Josephson junction arrays, excitons in quantum dots and
real 1D magnets, which motivated the recent study of
quantum computation in Heisenberg chains [4,5] will
be good candidates. Interactions in such systems are
difficult to tune. Our scheme can be implemented in
such systems without the elaborate control required for
quantum computation. 1D arrays of spins in solids [11,14]
are also candidates. There are ring molecules described
exceptionally well by HR, which also allow local
probes for individual spins [15](these are antiferromag-
netic, but a large B could make j0i the ground and j ~mmiR
the first excited states). Benzene molecules (with NMR
probes possible) with Jij � �!i�1;j=4� � �!i�2;j=12

���
3

p
� �

�!i�3;j=32�, still have j ~mmiR as eigenstates [16]. F can thus
be calculated by an IDFT to be 0.793 for r� s � 3 at t0 �
130. Principles of the scheme should also be testable in
simulated open ended Heisenberg chains in a 1D optical
lattice [17].

In this Letter, I have presented a protocol for quantum
communication through an unmeasured and unmodu-
lated spin chain. It allows quantum communication be-
tween adjacent quantum computers without interfacing
different physical systems. It is well known that there
exists an alternate trivial method of transferring quantum
states perfectly over a distance by a series of swaps. But
that requires an elaborate sequence of time dependent
207901-4
fields. The highly nontrivial finding of this Letter is that
even without doing anything, simply by placement, quan-
tum states can be transmitted with high fidelity over a
significant distance and entanglement of the order N�1=3

can be shared across a chain of length N. We also found
that a four-spin ring allows perfect quantum communi-
cation between diametrically opposite sites. This Letter
can be regarded as a study of a fundamental condensed
matter system (a finite ferromagnet and its excitations)
from the viewpoint of quantum communications. There
remains an enormous scope for future extensions to spin
graphs of varied geometry (such as in Ref. [18]) and
interactions and to other well-known condensed matter
systems.
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