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Variational Cluster Approach to Correlated Electron Systems in Low Dimensions
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A self-energy-functional approach is applied to construct cluster approximations for correlated
lattice models. It turns out that the cluster-perturbation theory [D. Sénéchal et al., Phys. Rev. Lett. 84,
522 (2000)] and the cellular dynamical mean-field theory [G. Kotliar et al., Phys. Rev. Lett. 87, 186401
(2001)] are limiting cases of a more general cluster method. The results for the one-dimensional
Hubbard model are discussed with regard to boundary conditions, bath degrees of freedom, and
cluster size.

DOI: 10.1103/PhysRevLett.91.206402 PACS numbers: 71.27.+a, 71.10.Fd, 71.15.–m
SFTCPT C DMF T

DMFTdirect

FIG. 1. Reference systems considered within various cluster
approximations for the D � 2 Hubbard model. Filled circles:
On-site interaction. Solid lines: Intracluster hopping. Dashed
lines: Intercluster hopping. Open circles: Additional nb uncor-
related bath sites. Big circles: Bath with nb � 1. Common to
all methods is (i) the numerical solution of the system of
decoupled clusters and (ii) the subsequent coupling of the
clusters via an RPA-like or Dyson equation. Bath parameters
are determined self-consistently. The self-energy-functional
theory (SFT) comprises the extreme limits CPT (nb � 0) and
hopping [4]. C-DMFT (nb � 1).
Low-dimensional systems of strongly interacting elec-
trons, such as high-temperature superconductors, cuprate
ladder compounds, and organic conductors, currently
form a focus of intense experimental and theoretical
work. It is generally accepted that many of the fascinating
physical properties of these materials arise from dif-
ferent kinds of short-range spatial correlations as well
as from different phases with long-range order. On a low
energy scale, this can be studied within effective models
such as the Hubbard model [1], for example. As these
models have to be considered in the intermediate- to
strong-coupling regime, weak-coupling perturbational
approaches are inapplicable. Cluster methods, which ap-
proximate the physics of the infinite system by solving the
problem for a corresponding finite cluster, appear to be
promising in this context as the interaction part can be
treated numerically exact. Currently, there are two
different groups of cluster methods which are discussed
intensively.

The point of reference for the first one is the direct
cluster approach [2]. Using an exact diagonalization or
quantum Monte Carlo technique, the effect of short-
range correlations can be studied by computing static
and dynamic correlation functions for an isolated small
cluster. This direct method, however, suffers from the fact
that phase transitions and long-range order cannot occur
in a system of finite size. Furthermore, the spectral func-
tion consists of a comparatively small number of poles.
This has caused the recent development of an extension
called cluster-perturbation theory (CPT) [3–6]. The CPT
procedure to calculate the one-electron Green’s function
G [7] is sketched in Fig. 1 for the Hubbard model: (i) The
lattice is divided into small clusters, and the intercluster
hopping V is switched off. The Green’s function G0 for the
system of decoupled clusters (Hamiltonian H0) is calcu-
lated numerically. (ii) The Green’s function G of the
lattice model H is then approximated by a random phase
approximation(RPA)-like expression G � G0�1� VG0��1

[7]. It has been pointed out that this corresponds to the
first order in a systematic expansion in the intercluster
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The point of reference for the second type of cluster
methods is the dynamical mean-field theory (DMFT)
[8,9]. The lattice model H is mapped onto an impurity
model H0 consisting of a correlated site coupled to an
infinite number of uncorrelated ‘‘bath’’ sites. The bath
must be determined self-consistently. As a mean-field
theory, the DMFT directly works in the thermodynamic
limit and is, thus, able to describe phases with long-range
order. Because of the locality of the self-energy [10],
however, it fails to incorporate the effects of short-range
correlations. This has been the reason for the development
of cluster extensions of the DMFT [11–14]. The main idea
of the cellular DMFT (C-DMFT) [14] is to replace the
correlated impurity site by a finite cluster (see Fig. 1) and
to proceed as follows: (i) The self-energy � is calculated
numerically for the system of decoupled clusters with an
uncorrelated bath attached to each of the correlated sites
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(Hamiltonian H0). (ii) The (approximate) Green’s func-
tion of the lattice model H is then obtained from � via the
lattice Dyson equation: G � �G�1

0 ����1. (iii) The pa-
rameters of the respective baths have to be recalculated
from G and � via the C-DMFT self-consistency condition
[9,14]. This requires one to repeat the above steps until
self-consistency is reached.

The first intention of this Letter is to show that both the
CPT and the C-DMFT can be considered as extreme
limits of a more general cluster approach which is based
on the self-energy-functional theory (SFT) proposed re-
cently [15]. This answers an open question [5] for the
relation between the different cluster methods and unifies
two approaches which appear to be rather different at
first sight. The presented cluster approach based on the
SFT not only reproduces the CPT (nb � 0) and the
C-DMFT (nb � 1) but also allows one to construct
approximations with an arbitrary number of bath sites
nb. This intermediate approach does not waive any of the
general merits such as causality and thermodynamical
consistency.

Second, this Letter shows that there is room for new
conceptual ideas beyond both the CPT and the C-DMFT:
(i) A consistent cluster approach can be constructed, e.g.,
by attaching uncorrelated baths at the cluster boundary
only. (ii) Not only the bath parameters but also the on-site
energies of and the hopping between the correlated sites
may be determined in a self-consistent (variational) way.
(iii) The question of boundary conditions can be an-
swered by the method itself and need not be imposed
by hand. To discuss the relevance and advantages or dis-
advantages of these points, some numerical results will
be presented for the one-dimensional (D � 1) Hub-
bard model.

Self-energy-functional theory (SFT).—Consider a sys-
tem of fermions on an infinite lattice with on-site
Coulomb interactions at temperature T and chemical
potential �. Its Hamiltonian H � H0�t� �H1�U� con-
sists of a one-particle part which depends on a set of
hopping parameters t and an interaction part with
Coulomb-interaction parameters U. The grand potential
� can be obtained from the stationary point of a self-
energy functional,

�t��	 
 Tr ln���G�1
0 ����1	 � F��	; (1)

as has been discussed in Ref. [15]. Here G0 � 1=�!�
�� t� and F��	 is the Legendre transform of the
Luttinger-Ward functional 
�G	. As the latter is con-
structed as an infinite series of renormalized skeleton
diagrams [16], the self-energy functional is not known
explicitly. Nevertheless, the exact evaluation of �t��	
and the determination of the stationary point is possible
[15] on a restricted space S of trial self-energies ��t0� 2
S. Because of this restriction, the procedure becomes
approximative.
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Generally, the space S consists of t0 representable self-
energies. � is termed t0 representable if there are hopping
parameters t0 such that � � ��t0� is the exact self-energy
of the model H0 � H0�t0� �H1�U� (‘‘reference system’’).
Note that both the original system H and the reference
system H0 must share the same interaction part. For any �
parametrized as ��t0�, we then have [15]:

�t���t0�	 ��0 � Tr lnf��G�1
0 ���t0�	�1g

� Tr ln��G0�; (2)

where �0, G0, and ��t0� are the grand potential, the
Green’s function, and the self-energy of the reference
system H0, while G0 is the free Green’s function of H.
For a proper choice of t0 (namely, such that certain
degrees of freedom in H0, e.g., those in different clusters,
are decoupled), a (numerically) exact computation of
these quantities is possible. Hence, the self-energy func-
tional (2) can be evaluated exactly for this � � ��t0�. A
certain approximation is characterized by a choice for S.
As � is parametrized by t0, this means to specify a space
of variational parameters t0. Any choice leads to a ther-
modynamically consistent approach since, once the
variational procedure is carried out, Eq. (2) provides an
explicit expression for a thermodynamical potential. For a
further discussion of the general concept of the SFT, see
Ref. [15]; a detailed description of its practical application
is given in Ref. [17].

Cluster approximations.—Figure 1 illustrates the con-
struction of cluster approximations within the framework
of the SFT. To be specific, H is taken to be the Hubbard
model with nearest-neighbor hopping. Subdividing the
infinite lattice into identical clusters of finite size, H0 is
obtained from H by switching off the intercluster hop-
ping and by switching on the hopping to new uncorrelated
(Ubath � 0) bath sites (Fig. 1, middle). Both operations
merely change the one-particle part of the Hamiltonian,
i.e., t ! t0, while the interaction part (U) remains fixed,
as required. To search for a stationary point on this space
S of cluster-representable self-energies, one has to pro-
ceed as follows: (i) Compute the self-energy ��t0� of the
reference system for a given t0. (ii) Use Eq. (2) to evaluate
�t��	 at � � ��t0�. (iii) Repeat steps (i) and (ii) for
different t0 to compute the function ��t0� 
 �t���t0�	
and the stationary point t0s given by @��t0s�=@t0 � 0. As
shown in Ref. [17], causality requirements are respected.

The variational adjustment of the intracluster one-
particle parameters t0 can be looked upon as a (partial)
compensation for the error introduced by the finite clus-
ter size. An inclusion of nb bath sites per original corre-
lated site enlarges the number of variational parameters
and thereby the space S. This is expected to (and does)
improve the approximation (see results below). In the
limit of infinite cluster size (number of correlated sites
within a cluster Nc ! 1), the exact self-energy becomes
t0 representable and therefore the cluster approximation
206402-2
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FIG. 2. E0 
 ���hNi vs t0 as obtained by evaluating the
self-energy functional � � ����t0�	. Original system H: D �
1 Hubbard model with nearest neighbor (NN) hopping t � 1
and U � 8 for T � 0 and � � U=2 (half filling). Reference
system H0: Set of decoupled Hubbard chains with Nc sites each;
Nc � 2; 4; 6; 8; 10 as indicated. Variational parameter: NN hop-
ping t0 of H0. The inset shows �E0 � E0 � E0;min vs t0.
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itself becomes exact. Since Nc must be finite (small) in
any practical calculation, one should focus on local quan-
tities such as the on-site Green’s function Gii � �G�1

0 �
��t0s�	�1

ii , for example.
CPT and C-DMFT.—For a certain cluster approxima-

tion, it has to be specified which of the different
intracluster one-particle parameters t0 are treated as
variational parameters. The simplest idea is to consider
the intracluster hopping as fixed at the original values,
t0ij � tij (for i; j in the same cluster), and not to switch on
a hopping to bath sites (i.e., not to introduce any bath
sites). In this case, there is no variational parameter at all.
��t0� is calculated once, and the Green’s function G for
the original model is obtained by the (lattice) Dyson
equation G�1 � G�1

0 ���t0�. As ��t0� is the exact self-
energy for H0 we also have ��t0� � G0�1

0 �G0�1 and,
consequently, G�1 � G�1

0 �G0�1
0 � G0�1 � G0�1 � V

with V being the intercluster hopping. As this is equiva-
lent to the RPA-type equation mentioned above, one
recovers the CPT.

The C-DMFT is obtained by introducing a hopping t0ir
to nb � 1 bath sites r � 1; . . . ; nb per correlated site i �
1; . . . ; Nc and taking this hopping (‘‘hybridization’’) and
the bath on-site energies �0i;r as variational parameters,
while for the correlated sites t0ij � tij is still fixed.
Assume that bath parameters ft0ir; �

0
i;rg can be found such

that the C-DMFT self-consistency equation is fulfilled. In
Ref. [14], this was given in k-space representation (k from
the reduced Brillouin zone). In the real-space representa-
tion, the self-consistency equation reads

�G�1
0 ���ft0ir; �

0
i;rg�	

�1
ij � G0

ij; (3)

where i; j must belong to the same cluster. This immedi-
ately implies that ��ft0ir; �

0
i;rg� satisfies the SFT Euler

equation @��t0�=@t0 � 0 or, calculating the derivative,

T
X
!

X
ij

�
1

G�1
0 ���t0�

� G0

�
ji

@�ij�t0�
@t0

� 0: (4)

This holds since the ‘‘projector’’ @�ij�t0�=@t0 � 0 if i; j
belong to different clusters as these are decoupled in the
reference system. We conclude that the self-energy func-
tional is stationary at the C-DMFT self-energy.

In principle, approximations may also be constructed
in reciprocal k space. For the Hubbard model, however,
there is no simple reference system as the interaction part
is nonlocal in k space. In particular, it is not possible to
recover the dynamical cluster approximation [12] within
the SFT.

‘‘Intermediate’’ approach.—The C-DMFT self-
consistency equation can generally be fulfilled for
nb � 1 only. Within a cluster approach based on the
SFT there are no formal problems, however, if nb <1.
A finite nb yields an approximation inferior as compared
to nb � 1 (C-DMFT) and superior as compared to
nb � 0 (CPT) as there are less or more variational pa-
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rameters, respectively. For 0< nb <1, the parameters
must be found to satisfy Eq. (4).

Since the convergence with respect to nb appears to be
rapid for local physical quantities [15], and since the
cluster Hilbert-space dimension increases exponentially
with nb, approximations with small nb (or even nb � 0,
CPT) appear advantageous. Anyway, the bath concept
must become irrelevant in the limit Nc ! 1. On the other
hand, there are good reasons to introduce bath sites:
Depending on the dimensionality of the problem, it can
be the description of the local (temporal) correlations that
needs to be improved in the first place. Note that, for
Nc � 1 and nb � 1, the DMFT is recovered which rep-
resents the exact solution for D � 1 [9]. Furthermore,
bath sites can serve as particle reservoirs which will be
essential for a proper description of filling dependencies.
Finally, the presence of bath sites may also facilitate
practical calculations to treat the reference system, e.g.,
by an attenuation of the sign problem in the context of a
Hirsch-Fye–like quantum Monte Carlo approach [18].

Intracluster hopping determined variationally.—For
both the CPT and the C-DMFT, the hopping between
correlated sites is fixed at t0ij � tij [for the C-DMFT,
this is even a necessary condition to satisfy Eq. (3) as
can easily be seen from a high-frequency expansion].
Contrary, within the SFT there is a priori no reason to
fix t0ij. A cluster approximation with t0ij determined varia-
tionally represents another intermediate approach as shall
be discussed in the following.

Numerical calculations have been performed for the
D � 1 Hubbard model. Instead of solving the Euler equa-
tion (4), we have directly evaluated the self-energy func-
tional according to Eq. (2). The reference system H0 is
taken to be a set of decoupled Hubbard chains with Nc

correlated sites each. For Nc � 10 (no additional bath
206402-3
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sites), the ground-state energy E0
0 (and thereby �0 �

E0
0 ��hNi0 for T � 0) and the Green’s function G0 are

computed using the standard Lanczos algorithm [19].
The self-energy is obtained as ��t0� � G0�1

0 � G0�1. In
Eq. (2), the trace ‘‘Tr’’ consists of a sum over a complete
set of one-particle quantum numbers and (after analytical
continuation to the real ! axis) a frequency integration.
To keep the calculations simple, only a single variational
parameter is taken into account.

Figure 2 shows E0�t0� � ��t0� ��hNi0 with ��t0� 

�t���t0�	, where t0 is the nearest-neighbor hopping within
the cluster. Clearly, E0 is stationary for t0 very close to t
but t0 � t. The effect is most obvious for the smallest
cluster size Nc � 2 (see inset). We conclude that a
variational determination of the hopping between the
correlated sites in fact improves the approximation.
Surprisingly, however, the improvement is almost negli-
gible for reasonable Nc. Similar results are obtained when
different selected hopping parameters are varied.

Different variational parameters.—It is possible to
construct a consistent cluster approach by attaching un-
correlated bath sites only at the boundaries of the respec-
tive cluster. Compared to the C-DMFT, this choice
represents a certain restriction of the parameter set which
is motivated by the expectation that here bath degrees of
freedom compensate for the finite-size errors most effi-
ciently. Figure 3 (left) shows that switching on the hop-
ping tb to two bath sites in fact lowers the minimal E0.
With increasing Nc the energy difference E0�tb � tmin

b � �
E0�0� decreases, and E0�tb� becomes almost flat for small
tb, as expected. Note that the binding energy gain due to
inclusion of two bath sites jE0�Nc; t

min
b � � E0�Nc; 0�j is

always smaller than the gain jE0�Nc � 2; 0� � E0�Nc; 0�j
due to a larger cluster: Introducing bath sites is less
efficient as increasing the cluster size, at least for
D � 1. Interestingly, the convergence of E0 with increas-
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ing Nc appears to be much faster as compared to the
direct cluster method (see arrows in Fig. 3).

Within the CPT, the question of the correct boundary
conditions is decided a posteriori by inspection of the
respective results for the spectral density [5]. Here we
introduce a hopping parameter tr between the edge sites
and let the method ‘‘decide’’ by itself. As is seen in Fig. 3
(right), a minimum for E0 is obtained at tr � 0 (open
boundary conditions) while there is no indication for a
stationary point at tr � t (periodic boundary conditions).

The self-energy-functional theory has been shown to
provide a consistent and very general framework for the
construction of variational cluster approximations includ-
ing the CPT and the C-DMFT. The extreme flexibility
with regard to the choice of variational parameters
offers a variety of further methodical developments and
applications.
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