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Experimental Electronic Heat Capacities of a- and 6-Plutonium:
Heavy-Fermion Physics in an Element
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We have measured the heat capacities of 6-Pug¢sAlj s and a-Pu over the temperature range 2—303 K.
The availability of data below 10 K plus an estimate of the phonon contribution to the heat capacity
based on recent neutron-scattering experiments on the same sample enable us to make a reliable deduc-
tion of the electronic contribution to the heat capacity of 0-PuygsAlyps; we find y = 64 =
3mIK 2mol ™! as T — 0. This is larger than that of any element and large enough for 8-PugsAly s
to be classed as a heavy-fermion system. By contrast, y = 17 = 1 mJ K~2mol ™! in a-Pu. Two distinct
anomalies are seen in the electronic contribution to the heat capacity of 8-Pugg5Alj s, one or both of
which may be associated with the formation of the «’-martensitic phase. We suggest that the large y
value of 6-Pug¢sAl) s may be caused by proximity to a quantum-critical point.
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Plutonium represents the boundary between localized
(Am) and delocalized (Np) 5f electrons in the actinide
series [1,2]; the resultant small energy scales, large den-
sity of states, and general instability of the 5f-electron
system may be the root cause of many of Pu’s extraordi-
nary properties [1-7]. For instance, it is thought that
itinerant 5f electrons lower their energy by causing
Peierls-like distortions, yielding the low-temperature «
(monoclinic), B (body-centered monoclinic), and vy
(body-centered orthorhombic) phases [6,8]. By contrast,
it is believed that some or all of the 5f electrons are
localized in the 6 phase, allowing the Madelung poten-
tial of the remaining s, p, and d electrons to produce a
higher symmetry face-centered cubic structure [1,2,8].
Very little provocation is required to transform the low-
symmetry phases into 6-Pu; the 6 phase occurs between
319 and 451°C in pure Pu and is stabilized to zero
temperature by adding a small amount of a trivalent
element, such as Al, Ce, or Ga [7].

A reliable estimate of the electronic contribution to the
entropy of Pu is a very important key in understanding
the difference between the « and & phases and the dra-
matic effect of alloying. Unfortunately, attempts to ex-
tract relevant information from Cp, the experimental heat
capacity [9-16], have been inconclusive because the pho-
non contribution to Cp was unknown. A traditional way to
circumvent this problem is to use low-temperature Cp
data; a plot of Cp/T versus T?, where T is the tempera-
ture, is linear at sufficiently low 7 [17];

(Cp/T) =y + aT>. )

Here yT and aT? = (127*RT?)/(563) are the electronic
and phonon contributions to Cp; 6p is the Debye tem-
perature [17]. The T = O intercept y is a measure of the
electronic density of states. Sadly, most measurements
of Cp in Pu have been restricted to 7 = 10 K, due to
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PACS numbers: 65.40.Ba, 61.66.Bi, 61.82.Bg, 65.40.Gr

problems associated with self-heating caused by radio-
active decay [9-16]. In spite of some pioneering work
downtoT = 7 Kin @-Pu[14]and T = 4 K in 6-Pu, _, Al,
[15], there is still a considerable spread in the vy values
reported in the literature; e.g., in the low-T 6-Pu;_,Al,
measurements [15] the 7y values range from 42 to
68 mJ K~ 2mol !

In this Letter, we report the solution of these problems
by (i) measuring Cp for a-Pu and Al-stabilized 6-Pu to
significantly lower temperatures than has been previously
possible (T = 2 K), using a sample mount which mini-
mizes the effect of self-heating, and (ii) extracting the
electronic component of Cp for §-PuggsAlygs by sub-
tracting the phonon contribution, deduced using recent
neutron-scattering data on the same sample, from the raw
data. These procedures show that the electronic contribu-
tion to the heat capacity varies linearly with 7 only when
T =< 10 K. Moreover, we observe two distinct anomalies
in the electronic heat capacity of 8-PujqsAlj g5, one or
both of which may be associated with the a’-martensitic
phase observed by optical metallography. By restricting
our analysis to suitably low temperatures, we obtain
y=64*3mIK 2mol™' for §-PuygsAlygs and y =
17+ 1 mJK 2mol™! for pure a-Pu in the limit 7 — 0.
We also observe a large difference in the electronic con-
tribution to the total entropy for a-Pu and 6-Pug gs5Alg 5.

The «@-Pu sample was prepared by levitation zone
refining and distillation as described in Ref. [18].
Starting material was double-electrorefined ?*’Pu cast
into rods. The rods were purified by passing a 10 mm-
long molten floating zone (750 °C) 10 times through a cast
rod at a travel rate of 1.5 cm/h at 1075 Pa [18]. After this,
the impurity level was 174 = 26 ppm, of which U forms
approximately 110 ppm [18]. The &-Pu specimen was
alloyed by arc melting followed by a lengthy anneal at
450 °C. The specimen was formed into a plate by rolling,
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followed by heat treatments to relieve the cold work.
Samples were cut, mechanically polished, chemically
polished, and heat treated prior to measurement.

Heat capacity measurements were made using the ther-
mal relaxation method in a Quantum Design PPMS, the
performance of which has been subjected to extensive
analysis [19]. To counteract the self-heating due to radio-
active decay, a modified sample puck with high thermal
contact to the heat bath was employed for the low-7" data.
Measurements comparing the modified puck with a stan-
dard one at higher T were identical within experimental
error. Measurements made from 10 to 300 K used samples
ranging from 20 to 30 mg, while below 10 K, sample
masses of 5 to 10 mg were used. Samples were secured to
the puck using Apiezon N-grease to ensure good thermal
contact. Immediately before each sample was studied, the
addenda (puck and grease) were measured over the same
T range. All heat capacities shown in the figures are
corrected by subtracting the addenda contribution from
the raw data; systematic errors (shown as bars) due to
inaccuracies in the PPMS [19] and measurement of the
sample masses are = =1.5% of Cp.

The heat capacity Cp of 8-Pug g5Aly o5 is plotted versus
T in Fig. 1 (solid points). To extract the electronic con-
tribution to Cp, we employ a recent measurement of the
phonon density of states g(E) as a function of energy E
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FIG. 1. Experimental heat capacity of 6-PuggsAlyos (filled
points: @) versus temperature. The curve is Cpyy,, the pho-
non contribution to the heat capacity. The electronic contribu-
tion to the heat capacity (Co = Cp — Cpyyp) is plotted as hollow
points (O).
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carried out on the same sample of 0-PuggsAlygs [20].
Neutron-scattering and sound-velocity data were used to
derive g(E) at T = 27, 65, 150, and 300 K [20]. The
phonon contribution to Cp, C}Jph, was computed using

Cppn = Cyph = aar[ L - Eg(E)f(E, T)dE}. )

Here Cyyy, is the phonon heat capacity at constant volume
[21], E is the energy, and f(E, T) is the Bose-Einstein
distribution function.

Such an approximation neglects anharmonic effects;
however, the T dependence of g(E) [20] shows that such
effects are small for 7 =< 150 K. More significantly, the
computed Cj,ph varied by up to £1% (i.e., of similar size
to the experimental uncertainty in Cp), depending on
which g(E) (i.e., that based on the 27, 65, 150, or 300 K
data) was used. To minimize the impact of this effect, the
phonon contribution to the heat capacity Cpyy plotted in
Fig. 1 (curve) is a T-dependent interpolation between the
computed Chp,.

C.,, the electronic contribution to Cp of d-PuygsAl o5,
was estimated by subtracting Cpyy, from the experimental
Cp data [21]; C,; values are shown as hollow points in
Fig. 1 and on an expanded vertical scale in Fig. 2(a). As
noted in the discussion of Eq. (1), the expectation for a
simple metal is that C,; = yT. Even a cursory inspection
of Fig. 2(a) shows that the experimental values of Cg
follow a straight line only through the origin for 7' <
10 K; between approximately 10 and 40 K, there is a
distinct “hump” superimposed on the quasilinear in-
crease, while at T = 65 K there is a “A-shaped” maxi-
mum, eventually followed by a more gentle increase.

A A-like feature in the heat capacity is characteristic of
a martensitic transition [23]. Support for this attribution
comes from the retention of a small fraction of the o’
phase, as revealed by the characteristic “tweed’ structure
shown in a metallographic examination of the sample
after thermal cycling (Fig. 3). Neutron-scattering and
elastic-moduli data on the same sample before and after
cooling [20] and volume-fraction analysis of optical met-
allography suggest that our 8-Pug 95 Al o5 contains around
5%-T1% of the «' phase. Note that a knowledge of the
phonon contribution was required to reveal the martensite
feature in the heat capacity; until the current work, no
clear indication of such a phase has been extracted from
the heat capacity of 6-Pu. Moreover, the manifestation of
the transition in C,; strongly suggests that the transition is
electronically driven.

Figure 2(b) shows the effective y(= C,/T) for
6-Pug g5Alg 05, plotted as a function of 7. For T = 10 K,
y=65mJK 2mol!. Around 10 K, there is a sharp
dip, followed immediately by the above-mentioned
hump in C,, which appears as a broad peak (maximum
at T = 13 K) in the effective y. Such a peak suggests a
contribution to the electronic entropy associated with a
second phase transition at 7 = 13 K. This may be linked

205901-2



VOLUME 91, NUMBER 20

PHYSICAL REVIEW LETTERS

week ending
14 NOVEMBER 2003

P
sL ﬁ% ¢ ¢ 3
o 52 ]
T [ i .
vl ]
=
Sy ]
1 .
0 | 1 | 1 1 1 1 1 l-
0 50 100 150 200 250 300
Temperature (K)
0 i SIO i 1(|)0 . 1I50 : Z(IJO . 2|50 . 300
120

)
—
-] =]
(=] o

C / T(mIK mol”
& o
(=] o

[ ]
EE!!!!' %2 s

N
[=]

RPN W T N T I N T

FIG. 2 (color online). (a) Electronic contribution to the heat
capacity of §-PugosAlygs (Ce = Cp — Cpypyp) versus T. (b) The
same data plotted as C,/T versus T.

to the A-like transition seen in C, at T = 65 K [Fig. 2(a)];
multistage phase transitions have been observed in acti-
nides such as U and predicted in Pu [24].

Above 40 K, Cq/T returns briefly to y=
70 mJ K 2mol™!, before falling gradually to 7y =
20 mJ K 2 mol~!. This complicated variation illustrates
the great importance of low-temperature (i.e., 7 =< 10 K)
Cp data. The nonlinear variation of the electronic con-
tribution to the heat capacity with T is the probable reason
for the previous, widely varying values of y and 6 for
6-Pu quoted in the literature [13,15,16].

Having established that the electronic contribution to
the heat capacity of 6-PuggsAly o5 is linear in T only be-
low T = 10 K, we perform a fit of Eq. (1) to the experi-
mental Cp data in this range; this is shown (@) in Fig. 4
which also displays Cp/T for pure a-Pu (O). Similarly,
the fit for @-Pu is restricted to T < 16 K. The fits of Eq. (1)
yield y = 64 =3 mJ K 2 mol ™! [in good agreement with
Fig. 2(b) and lying within the spread of values reported in
Ref. [15]] and 0D =100 =2 K for S-PUO.95A10.05.
Likewise, we obtain y=17*1mJK ?mol™!' (e,
within the range 16-23 mJK 2>mol™!' reported by
Ref. [14]) and 0 = 153 = 2 K for a-Pu.

The value of y for a-Pu is remarkable enough, being
bigger than that of any other element [12,25]; neverthe-
less, its large size may be understood reasonably conven-
tionally when the 5f electrons are taken into account [12].
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FIG. 3 (color). Optical metallography showing the surface of
the 0-PuggsAlg s heat capacity sample after the measurement.
The o' martensite phase is identified as the light tweed pattern
on the surface. The sample was photographed at 500 X , and the
standard American Society for Testing and Materials method
was used to determine a 5%-10 % volume fraction of the
martensite (light acicular formations).

However, y for 6-Pug¢sAly o5 is a factor ~4 bigger, being
large enough to class it as a heavy-fermion system [26].
Note that the increase cannot be simply related to the
presence of Al, which has a comparatively small value of
v in its pure form [25].

Finally, we compute the specific entropies using

300 C 300 C
Sy = f — 4T and S,y = f =Lar. @3
0 T 0 T

For 6-PuggsAly s, we find that S, = 11.4 JK™ ! mol ™!,
of which approximately 2 JK™! mol~! is associated with
the peak in C,/T at T = 13 K; this should be com-
pared with S,y = 68.4 JK™ ! mol~!. By contrast, Sy, =
57.1 JK 'mol ™! for a@-Pu. Although the lack of neutron
data means that we do not have a reliable means of
extracting C,; in a-Pu, an upper bound for S, is given
by 300y = 5.1 JK "mol~'. Hence, S.;/Sora = 0.09 for
a-Pu, roughly half the value Sg;/S,o1 = 0.17 obtained for
8-PuygsAlyps. As in the case of 7y, the S /S values
suggest that the role of the electronic system is enhanced
on going from the « to the 6 phase.

In some respects, the behavior of Pu is similar to
models of quantum criticality [27,28], which associate
quantum-critical points with rearrangements of the
Fermi surface, due either to charge- or spin-density-
wavelike reconstruction (analogous to the Peierls-like
distortions thought to occur in the a phase [8]) or to
the onset of itineracy for previously localized electrons
(as may occur in the transition from - to y-Pu [8]). A
characteristic feature of a quantum-critical point is the
proximity of many excited states to the ground state,
consistent with the anomalously large (for an element)
value of vy seen in 6-Pu [27]. All of the strange properties
of Pu, including the complex phase diagram, may, in fact,
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FIG. 4. Low-temperature values of Cp/T for both the pure
a-Pu (O) and 8-PuggsAly s (@) samples plotted as a function
of T?; the low-T portions of the data have been fitted to Eq. (1).

be the result of 6-Pu being close to a quantum-critical
point. This could imply that the properties of Pu are
“emergent”” and not easily derivable from microscopic
models.

In summary, we have measured the heat capacities of
6-PugosAlggs and «-Pu over the temperature range
2-303 K. The availability of data below 10 K plus an
estimate of the phonon contribution to the heat capacity
based on neutron-scattering data enable us to make a
reliable deduction of the low-temperature electronic
contribution to the heat capacity of 6-PugygsAljgs; we
find y =64*+3JK ?mol”'. By contrast, y =17+
1JK2mol™! in a-Pu. We note two anomalies in the
electronic contribution to the heat capacity of
6-Pug 95Al 05, one or both of which may be associated
with a martensitic phase transition. The large increase in
v and the electronic contribution to the entropy on going
from a- to 6-Pu may be associated with the proximity of
6-Pu to a quantum-critical point.
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