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Coarsening of Fractal Viscous Fingering Patterns
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We have measured the coarsening due to surface tension of radially grown fractal viscous fingering
patterns. The patterns at late times depend on the structural form at the onset of coarsening, providing
information on the age of the fractal. The coarsening process is not dynamically scale invariant,
exhibiting two dynamic length scales that grow as L1�t� � t0:22�0:02 and L2�t� � t0:31�0:02. The measured
exponents are in agreement with the results of recent numerical studies of diffusion-controlled
coarsening of a diffusion-limited aggregation fractal [Lipshtat et al., Phys. Rev. E 65, 050501 (2002)].
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Our experiments use a radial Hele-Shaw cell formed of
two 288 mm diameter optically polished glass plates

system size. At early times we find C� r over more
than a decade of length scales [Fig. 2(a)], indicating
Domain coarsening has been extensively studied for
two-phase systems such as Ising ferromagnets [1], binary
alloys [2,3], and binary fluids [4]. Quenching from a
stable state into an unstable state initiates phase ordering
that is often scale invariant (described by a single time-
evolving scale) [5]. In another class of systems, initial
unstable configurations are generated by a growth pro-
cess involving morphological instabilities. An unstable
deterministic growth process accompanied by noise can
generate fractal surfaces, as in solidification from a super-
saturated solution [6], growth of thin films during depo-
sition [7], and the formation of a fracture surface in a
brittle material [8] or geological landscape [9]. When the
driving force is removed, these far-from-equilibrium sys-
tems begin to relax. Relaxation in such systems has been
scarcely studied, and it is not known how the fractal
scaling affects the relaxation process. Numerical simula-
tions have revealed fragmentation of relaxing fractal
clusters [10–12], and similar fragmentation has been
observed during the relaxation of thin metal films depos-
ited on a substrate [7]. More recent simulations [13,14]
have revealed an absence of scale invariance; instead, the
coarsening (due to diffusion) was characterized by two
length scales increasing with different powers of time.
This loss of scale invariance occurs when a relaxation
process locally conserves the order parameter (compo-
nents of one phase can move around but cannot become
part of the other phase as they can in an Ising system).

We have conducted the first study of coarsening of a
radial viscous fingering pattern (Fig. 1). The pattern is
generated by the penetration of air into a thin oil layer
contained between two closely spaced plates. We find that
the coarsening is characterized by two length scales that
have the same scaling as found to describe the coarsening
of a diffusion-limited aggregation (DLA) fractal cluster
[13,14]. We first describe the experiment and then present
the data analysis that yields two length scales. We con-
clude by showing that the initial conditions affect the late
time structures.
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(60 mm thick) separated by a gap of 0.127 mm. The plates
are clamped into an aluminum holder with a 25.4 mm
thick Plexiglas clamp, which seals a 12.7 mm annular
buffer around the plates. The buffer and gap are filled with
silicon oil (viscosity � � 345 mPa s, surface tension � �
21:0 mN=m). Fingering patterns are generated by open-
ing the buffer to a reservoir below atmospheric pressure
and allowing air at atmospheric pressure to flow into the
gap through a center hole in the bottom plate. The high
rigidity and flatness of the cell permit a pressure differ-
ence up to 1 atm while keeping the variation in the gap
below 1%. The resultant highly branched patterns have a
minimum finger width more than 2 orders of magnitude
smaller than the cell size.When a cluster has grown to the
size of the cell, we block both the air and oil lines, and the
cluster relaxes due to surface tension. Megapixel images
are obtained at a rate decreasing from 12=s to 1 every
250 s for a total time of 105 s. Subtraction of background
and thresholding then provide binary images of the two
phases.

The observed coarsening of a viscous fingering pattern
is compared in Fig. 1 with the results of Conti et al. [13]
for simulation of diffusion-controlled coarsening of a
DLA cluster. In both cases the initial highly branched
fingering pattern at t � 0 becomes smoother as time
progresses, and the cluster breaks into fragments, while
its radius of gyration rg remains constant. (In the experi-
ment rg actually decreases slightly, 2% in 2� 104 s.)
Conti et al. [13] argue that a scale-invariant relaxation
must involve a significant decrease in rg. The lack of such
a decrease in our experiments is the first indication of a
breakdown of scale invariance.

Properties of the clusters are deduced from the density-
density correlation function, C�r; t� � h���r0; t�
���r0 �
r; t�
i, normalized at r � 0, with � � 1 in the air phase
and � � 0 in the oil phase. At intermediate length scales
C�r; t� decays as r
� with an exponent � that is related to
the fractal dimension of the cluster by D � 2
 �. This
power law is cut off at length scales comparable to the
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FIG. 1. Coarsening of fractal clusters. (a) Images of an ob-
served fingering pattern (cluster diameter 200 mm) relaxing
due to surface tension. (b) A DLA fractal undergoing diffusive
coarsening, obtained in a simulation by Conti et al. [13]. The
simulation used a dimensionless time step that corresponds to
2.1 s in the viscous fingering relaxation. The relaxation in both
systems is characterized by the smoothing of small scales,
fragmentation of the cluster, and a constant radius of gyration.
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fractal scaling with dimension D � 1:71� 0:03. As a
check, we also computed the dimension directly using a
box counting method, which yielded D � 1:70� 0:03.
Our result for D is in accord with the DLA fractal
dimension [15], D � 1:713� 0:003. The question of
whether Laplacian growth, including radial viscous fin-
205504-2
gering, is the continuum limit of DLA is currently the
focus of much research [16,17], but this question is be-
yond the scope of the present work.

At very small scales C�r; t� decays linearly [Fig. 2(b)]
with an inverse slope proportional to the smallest length
scale, L1�t�, which increases with time (Porod law [5]);
for lengths smaller than L1 the interface appears smooth.

Despite the dramatic time evolution of a cluster (Fig. 1),
the correlation function reveals that the large-scale struc-
ture remains frozen [see Figs. 2(a) and 2(c)]. The combi-
nation of an increasing lower cutoff and a frozen tail must
lead to the appearance of a second length scale: Because
of the conservation of volume, the integral of rC�r; t�
with respect to r is invariant in time. The thickening of
small scales while the largest scales remain frozen re-
quires the dilution of intermediate scales. Hence a dip
forms in C�r; t�, as can be seen in Fig. 2(a). The position of
the minimum corresponds to about half the distance
between adjacent arms of a cluster. We define L2 to be
the location of this minimum. This definition of the larger
length scale differs from that of Lipshtat et al. [14], who
obtained a length ‘2 by finding the smallest radius beyond
which jC�r; t� 
 C�r; 0�j was smaller than a predeter-
mined threshold. The length scale ‘2 was thus associated
with the boundary between the dilute and the frozen parts
of the correlation function. Our method for obtaining L2

is more robust and less arbitrary than the method for
determining ‘2, but we find that within the uncertainty
the two lengths are proportional, which indicates that the
interarm spacing determines the location of the correla-
tion function’s frozen tail.

At t � 0, both L1 and L2 are equal to the same cutoff
length scale L0, but at long times we find L1 / t0:22�0:02

and L2 / t0:31�0:02 [Fig. 2(d)]. Nearly the same exponent
values were obtained for the two length scales in diffu-
sion-controlled coarsening of a DLA cluster, 0:22� 0:01
and 0:32� 0:01 [14]. The different growth rates of L1 and
L2 exclude any global rescaling that would lead to the
same form for C�r; t� at all times, as can be seen in
Fig. 2(a).

In a scale-invariant coarsening process, information
about the initial structure is lost, but this is not the case in
the relaxation of viscous fingering patterns: the longer the
system evolves, the largerL2 is compared toL1 [Fig. 2(d)],
and the initial conditions of the cluster are not forgotten.
Instead, they determine a unique combination of L1 and
L2 at any time.

The effect of the initial conditions at late times is
illustrated by the clusters in Fig. 3. Different initial
pressure differences produced clusters with different
minimum length scales L0 but did not affect the cluster
fractal dimension [18]. We allowed each cluster to evolve
until the lower length scale reached the same value,
L1�t� � 14:0 mm. Clusters that evolved from a smaller
L0 had to evolve over longer times, so L2 became larger
for those old clusters, which have greater fragmentation
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FIG. 2. The time evolution of the correlation functions and length scales. (a) Correlation functions at different times t, averaged
over 16 experimental runs. The dashed line shows a fit to the fractal scaling region for the t � 0 curve, where C / r
0:29, yielding a
fractal dimension of D � 1:71� 0:03. The scaling regime shortens and eventually disappears as C�r; t� develops a minimum.
(b) The same correlation functions on a linear plot, showing a linear decay for the smallest scales. L1�t�, the length scale below
which the cluster is smooth (nonfractal), is obtained by measuring the inverse slope of a linear fit to C�r; t� at small scales. The
dashed line shows such a fit for C�r; t � 802 s�, which yields L1 � 7:14 mm. (c) The difference C�r; t� 
 C�r; 0� has a minimum
that is taken to be L2�t�, which is about half the interarm distance. (d) The time evolution of the two length scales with power law
fits at long times (dashed lines). At late times (t * 4000 s), L1 grows more slowly as the smaller bubbles approach their equilibrium
size after fragmentation.

FIG. 3. Four clusters generated with different pressure differ-
ences �P. The clusters have different initial length scales L0,
but the lower cutoff length has evolved in time to the same
value, L1 � 14:0 mm. The different evolution times lead to
different lengths L2, mirrored by enhanced fragmentation of
older clusters. In contrast to scale-invariant coarsening, the
initial conditions are not forgotten.
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and arm separation than the young clusters. Thus infor-
mation about the initial configuration is retained. In
principle a cluster’s age could be estimated from mea-
surements of L1 and L2 at a late time, but a precise
determination of age would require an understanding of
the evolution at early times, before the onset of the power
law scaling (t & 100 s).

In conclusion, we observe the loss of scale invariance in
the coarsening of fractal viscous fingering patterns: there
is a small length scale below which the cluster is smooth,
and a larger length scale corresponding to half the dis-
tance between adjacent cluster arms, and these two length
scales are described by different power laws. The
existence of the larger length scale is a consequence
of volume conservation together with local smoothing
in the relaxation process. The breakdown of scale
invariance suggests a scenario in which the present con-
figuration of other fractals, such as in geological systems,
might include information about their age and initial
morphology.
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