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Random Matrix Analysis of Human EEG Data
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We use random matrix theory to demonstrate the existence of generic and subject-independent
features of the ensemble of correlation matrices extracted from human EEG data. In particular, the
spectral density as well as the level spacings was analyzed and shown to be generic and subject
independent. We also investigate number variance distributions. In this case we show that when the
measured subject is visually stimulated the number variance displays deviations from the random
matrix prediction.
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It is known that random matrix theory describes cor-
rectly the spectral statistics of certain complex systems. It

elaborated concept of mutual information to extract the
cross-channel correlations.
The analysis of the EEG signal has a long history.
Being used as a diagnostic tool for nearly 70 years, it
still resists a strict and objective analysis and its inter-
pretation remains to be mostly intuitive and heuristic. In
particular, the cross-channel relations of the signal and
its reference to the sources and hence to certain morpho-
logical and/or functional brain structures are not under-
stood sufficiently and are a matter of intense research [1].

Many methods have been developed with the aim of
helping to understand the meaning of the EEG signal.
They range from a visual inspection of the record by an
experienced physician to sophisticated estimations which
attempt to describe the signal using phase space methods
or to model its sources by a set of oscillating electric
dipoles [2]. However none of these methods can be re-
garded as fully satisfactory.

The reason is that the EEG signal—an electric activity
of the brain measured by electrodes (channels) placed on
the scalp —is a superposition of electric signals which are
produced by a synchronous activity of numerous neurons.
The spatial propagation of the electric signal in the com-
plex brain tissue is far from being straightforward. More-
over, various groups of neurons participate in various and
sometimes independent tasks. All this together makes the
resulting signal complex and difficult to interpret. It has to
be stressed that the morphological and functional proper-
ties of the brain are not always the same. On the contrary,
they can be different for different individuals. This makes
the EEG signal dependent on the measured subject. Even
if different persons perform the same tasks and the mea-
surement is done under identical conditions the resulting
signals could differ.

The aim of this Letter is to demonstrate the existence
of features of the EEG signal which are universal, i.e., do
not depend on the subject being measured. To this purpose
we will investigate statistical properties of the cross-
channel correlations of the EEG data and compare them
with the predictions of the random matrix theory.
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is useful, in particular, when one deals with systems
which are chaotic but display at the same time certain
wave (or coherent) properties. A typical example is quan-
tum chaotic systems—see [3] for a review.

An EEG signal is a multivariate time series. Being
measured on the scalp, the activity of a particular cerebral
area influences the results of several EEG channels.
Hence the activity of a given cortex area leads to corre-
lations between the signal measured on different elec-
trodes. The object to be analyzed here is the simplest one
describing this correlation, namely, the correlation ma-
trix Cl;;m�T� of the signal:

Cl;m�T� �
XN2

j�N1

xl�tj�xm�tj�: (1)

Here xl�tj� denotes the EEG signal measured in the
channel l at time tj and the sum runs over j � N1, N1 �
1; . . . ; N2 such that tj 2 �T; T � ��. The length � of the
time interval used to evaluate the correlation matrix will
be set to 150 ms here. We assume that during this time
interval the activity of the electric sources in the brain can
be considered as constant. The obtained signal was not
filtered with a single exception, namely, a notched filter
serving to remove the 50 Hz noise induced by the electric
supply. The signal xl�tj� used to evaluate (1) was addi-
tionally preprocessed so that its mean is set to zero and
the variance equal to 1,

XN2

j�N1

xl�tj� � 0;
XN2

j�N1

xl�tj�2 � 1: (2)

The importance of correlations for the signal analysis
was recognized a few years ago by Kwapien and collab-
orators when they investigated the MEG (magnetoence-
falography) signal of a brain auditory response [4]. In
addition to the correlation matrix they used also a more
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FIG. 1. The eigenvalue density is plotted for data obtained by
measuring three different people under the same conditions.
The behavior for large � is similar in all three cases and shows
a clear algebraic behavior (a straight line in the log-log plot).
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Our aim is to analyze the EEG correlations using tools
of the random matrix theory. To this aim it is necessary to
define a matrix ensemble based on the EEG data. Here we
use the fact that the brain is nonstationary. This means
that the tasks it is performing change with the time.
Hence the structure of the correlation matrix (1) changes.
A typical EEG measurement lasts about 15–20 min. This
time interval can me divided into roughly 7000 not over-
lapping stationary windows over which the correlation
matrix (1) is evaluated. In such a way we get a set of 7000
correlation matrices. These matrices will represent the
ensemble we will work with.

Because of the individuality of the EEG signal and also
due to the problems related to the technique of attaching
the electrodes to the scalp we cannot mix together data
obtained during different measurement sessions. This
means that even for one person we get different measure-
ments for different matrix ensembles. There is one more
drawback which is related to the above definition of the
150 ms wide stationary window: to get enough sampling
points inside a particular window we have to use mea-
surements performed with a high sampling rate (we will
use data obtained with the sampling rate of 1012 Hz).

Random matrix theory deals with statistical properties
of the eigenvalues �n of the correlation matrix C,

Cj�ni � �nj�ni; (3)

with j�ni being the corresponding eigenvectors. The sim-
plest property of the eigenvalues family related to a
matrix ensemble is the eigenvalue density ����. It counts
the mean number of eigenvalues contained in an interval
�a; b�, i.e.,

f�n; �n 2 �a; b�g �
Z b

a
����d�: (4)

Assuming that the time series xl�tj� is random and
Gaussian for all l, i.e., that for each l the values xl�tj�
are random, normally distributed with the variance equal
to 1 and not correlated, we get an ensemble of random
matrices which was mathematically studied by Mar-
chenko and Pastur [5,6]. In particular, the density ����
of this ensemble is known and given by the formula [7]

���� �

��������������������������������������������
��max 
 ����
 �min�

p
2�Q�

; (5)

where Q � M=N with M being the number of channels, N
is the number of the sampling points tj, N > M, and
�max � 1�Q� 2

����
Q

p
; �min � 1�Q
 2

����
Q

p
.

The spectral density is known to be dependent on the
underlying data. Since EEG is not a random signal, but on
the contrary, it is synchronized and correlated by the
corresponding brain activity, we might expect that the
spectral density will not follow the Marchenko-Pastur
prediction and will be subject dependent. This is, to our
surprise, not true at all. We have investigated the EEG
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records of 90 people and evaluated the corresponding
level density function. The result is plotted in Fig. 1 (to
keep the plot simple we displayed densities evaluated for
three different subjects as a typical example).

For small eigenvalues the spectral density indeed de-
pends on the measured subject. It displays nevertheless a
profound and subject-independent algebraic tail for large
�. This is a surprise since one would expect just the op-
posite behavior. Specifically, one might expect that small
eigenvalues of the correlation matrix feel the influence of
the system noise. The spectral density should therefore
display universal behavior for small eigenvalues similar
to that of the Marchenko-Pastur ensemble. The large
eigenvalues on the other hand contain the information
about significant correlations and hence about processes
in the brain. Consequently, one would expect a nonuni-
versal and subject-dependent behavior.

Instead of being described by the Marchenko-Pastur
ensemble the spectral density obtained with the help of
the EEG signal seems to fit better into the predictions
valid for Wishard matrices and chiral ensembles [3]. For
these ensembles, which are related to the covariance
matrices of the signal, the spectral density has an alge-
braic singularity at the origin, just like the density de-
rived from the EEG data.

The universal behavior of the spectral density for large
� points to the fact that the seemingly individual brain
activity contains some common level of synchronization
which is reflected in the generic large tail behavior of the
spectral density. This fact remains valid even when the
subjects are stimulated (we tried acoustic and optical
stimulations). The algebraic character of the tail is also
of importance. A similar behavior (universal and alge-
braiclike tail of the spectral density) has been observed
198104-2
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FIG. 2. A typical level spacing distribution obtained for a
resting subject (eyes open, no stimulation) (crosses) and a
stimulated subject (squares). The result is compared with for-
mula (8) (solid line).
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also for correlation matrices of systems with local fluc-
tuations governed by Lévy flights [8]. A typical example
displaying this type of behavior is a time series describ-
ing the price fluctuations of individual stocks at an asset
market. It has been argued by Burda and collaborators [9]
that the existence of an algebraic tail in the spectral
density is a sign for critical behavior of the underlying
system. Using MEG measurements, signs of critical be-
havior of the brain have been found also in the power
spectra of the related signal which has a ‘‘1=f’’ type
behavior [10]. This was interpreted as an indication for
self-organized critical behavior of the brain which is
generated by a fractal (scale-invariant) avalanchelike
mechanism.

In the principal-component method the eigenvalues
and eigenvectors of the correlation matrix are used to
identify the most important sources of the signal. Small
eigenvalues are usually neglected and the related corre-
lations are regarded as unimportant. But the fact that
some eigenvalue is small does not necessarily mean that
the related signals are not important. The ‘‘smallness’’ of
the eigenvalue can be a consequence of external influence
which screens a part of the signal coming from a certain
domain. To investigate the spectral statistics of the corre-
lation matrices more closely we have to first put all the
eigenvalues on the same footing. This is done by unfold-
ing the spectra, i.e., by a spectral mapping �n ! ~��n that
‘‘unifies’’ the system-dependent spectral densities in such
a way that the resulting eigenvalue density of ~��n is con-
stant,

~�� n � N��n� (6)

with N�E� being the spectral counting function

N�E� �
Z E

0
����d�: (7)

After the unfolding we get ��~��n� � 1.
In the remaining part of this Letter we will work with

unfolded eigenvalues without mentioning them explicitly
and we will omit the tilde in the notation for the sake of
simplicity. The random matrix theory predicts universal
statistical properties of the unfolded spectra provided the
underlying matrix ensemble is large enough to suffi-
ciently fill the space of all matrices with a given symme-
try. This generic behavior is observed, for instance, in the
spectra of chaotic quantum systems. To demonstrate that a
similar universal property is observed also for correlation
matrices resulting from the EEG measurements we will
focus on two statistical distributions widely used in the
field of quantum chaos.

The simplest one, which takes into account only corre-
lations between neighboring eigenvalues, deals with spac-
ings sn � �n�1 
 �n (here we assume the eigenvalues �n
to be ordered with respect to the magnitude, i.e., �n 
�n�1). The probability density of finding a given spacing s
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in the spectra is for random real symmetric matrices well
approximated by the Wigner formula

P�s� �
�
2
s exp

�



�
4
s2
�
: (8)

Another, more subtle distribution that takes into account
simultaneous correlation between a group of L subsequent
eigenvalues is the number variance �2 defined as

�2�L� � h�f�n < Lg 
 L�2i (9)

(here f�n < Lg denotes the number of eigenvalues smaller
then L).

In this case the theory of random matrices predicts

�2�L� �
2

�2

�
log�2�L� � 1:5772


�2

8

�
: (10)

These distributions are of universal validity. This has
been confirmed, for instance, for spectra of chaotic wave
systems that display this distribution independently of
their physical character. A similar observation has been
done also for a time series which characterizes the evo-
lution of atmospheric quantities [11] or the price fluctua-
tions on an asset marker [12].

As we have already mentioned the EEG signal is sub-
ject dependent. Nevertheless, the spectral statistical prop-
erties of the correlation matrices are universal. In
particular, the behavior of the level spacing distribution
and number variance obtained from the EEG data of
healthy persons are well described by Eqs. (8) and (10),
respectively.

We have investigated the data of 90 people which were
measured without an external stimulation. A part of the
data was obtained by a standard clinical EEG device with
198104-3
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FIG. 3. A typical number variance obtained for a resting
subject (eyes open, no stimulation) (crosses) and a stimulated
subject (squares). The result is compared with formula (10)
(solid line).
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19 channels and a part with the help of an experimental
device having 15 channels which was placed inside a
Faraday trap to avoid external influence. Before the analy-
sis the data were visually inspected and parts corrupted
with artifacts (eyes blinking, a motion of the subject, etc.)
were removed. Finally, the resulting spectral data were
unfolded. As a result we obtained a convincing universal
behavior which is in accordance with the predictions of
the random matrix theory.

Typical results for the level spacing and number vari-
ance distributions are shown in Figs. 2 and 3. The data
were obtained under the circumstances that volunteers
were measured first under resting conditions (no stimula-
tion) and then again when these persons were visually
stimulated by a periodically moving square. The stimu-
lation is expected to change the correlation pattern of the
data due to its large response in the visual cortex. Never-
theless, it turned out that these changes are too subtle to
influence the level spacing distribution. In all cases we
find a very good agreement with the random matrix
theory prediction. The standard deviation between the
values given by the Wigner formula and the results ob-
tained from the EEG data is equal to 0.026 for the resting
subject and 0.027 for the stimulated case.

The number variance is, however, quite sensitive and
changes when the subject is visually stimulated. The
random matrix prediction is in this case valid for non-
stimulated data only, where the standard deviation be-
tween the predicted and measured values is equal to 0.05.
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(The measurement with a stimulation leads to the stan-
dard deviation as large as 0.6.) This can be easily under-
stood. A visual stimulation changes the activity of the
visual cortex which proceeds the visual input. As a con-
sequence, its relative correlations with the remaining
parts of the cortex are lowered which leads finally to
the observed deviation of �2�L� for larger L.

This result is of interest since the number variance may
change not only due to an external stimulation but also
when the correlation ensemble is influenced, for instance,
by some pathological process. It has to be stressed at this
point, however, that number variance is also quite sensi-
tive to artifacts. To obtain a result which is in agreement
with the random matrix theory, all artifacts have to be
carefully removed. We mean by artifacts those changes in
the EEG signal that lead within the correlation window to
a variance which is 2 times larger than the mean variance
evaluated over all correlation windows. Such windows
were rejected and were not used in further considerations.
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