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Bloch-Like Oscillations in a One-Dimensional Lattice with Long-Range Correlated Disorder
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We study the dynamics of an electron subjected to a uniform electric field within a tight-binding
model with long-range-correlated diagonal disorder. The random distribution of site energies is assumed
to have a power spectrum S�k� � 1=k� with � > 0. de Moura and Lyra [Phys. Rev. Lett. 81, 3735
(1998)] predicted that this model supports a phase of delocalized states at the band center, separated
from localized states by two mobility edges, provided � > 2. We find clear signatures of Bloch-like
oscillations of an initial Gaussian wave packet between the two mobility edges and determine the
bandwidth of extended states, in perfect agreement with the zero-field prediction.
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oscillations [9] of the wave packet between the two mo-
bility edges of the delocalized phase of states. The am-

sequence to have h"ni � 0 and h"2ni � 1, where h� � �i
indicates average over the random phases �k. The
The single-parameter scaling hypothesis predicts lo-
calization of a single quasiparticle in one (1D) and two
dimensions with time-reversal symmetry, independently
of the disorder strength present in the system [1]. There
exist, however, low-dimensional systems that do not obey
the single-parameter scaling framework. Thus, the ab-
sence of Anderson localization in the presence of spatial
short-range correlations in disorder [2,3] was put forward
to explain transport properties of semiconductor super-
lattices with intentional correlated disorder [4]. Further, it
was demonstrated that long-range correlated diagonal
[5,6] and off-diagonal [7] disorder also acts towards de-
localization of 1D quasiparticle states. Furthermore,
long-range correlations can result in the emergence of a
phase of extended states in the thermodynamic limit. This
phase appears at the band center and is separated from
localized states by two mobility edges [5]. This theoreti-
cal prediction was experimentally validated by measur-
ing microwave transmission spectra of a single-mode
waveguide with inserted correlated scatterers [8]. In the
case of short-range correlated disorder, the delocalized
phase does not appear: The number of delocalized states
increases proportionally to the square root of the system
size, and thus this phase has zero measure in the thermo-
dynamic limit.

In this Letter, we focus on the dynamical properties of
an electron in a system with long-range correlated diago-
nal disorder. Interplay between the delocalization effect,
preserved by the long-range correlated disorder, and the
dynamic localization, caused by an electric field acting
on the system, is of our interest. We compute the behavior
of an initial Gaussian wave packet in the presence of
a uniform electric field solving numerically the 1D
time-dependent Schrödinger equation for the complete
Hamiltonian. We found clear signatures of Bloch-like
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plitude of the oscillatory motion of the centroid allows us
to determine the bandwidth of the delocalized phase.

We consider a tight-binding Hamiltonian with long-
range-correlated diagonal disorder and an external dc
electric field on a regular 1D open lattice of spacing a [10]

H �
XN
n�1

�~""n � eFan�jnihnj

� J
XN�1

n�1

�jnihn	 1j 	 jn	 1ihnj�; (1)

where jni is a Wannier state localized at site nwith energy
~""n, F is the external uniform electric field, and N is even.
The intersite coupling is restricted to nearest neighbors
and assumed to be uniform over the entire lattice with
J > 0. In terms of the Wannier amplitudes  n�t� �
hnj��t�i, the Schrödinger equation reads [11]

i _  n � �"n � Fn� n �  n	1 �  n�1; (2)

where we introduced the dimensionless parameters "n �
~""n=J, F � eFa=J, and time is expressed in units of �h=J.

The source of disorder is the stochastic fluctuations of
energies �n, which we are going to consider as being long-
range correlated. One of the simplest ways to numerically
generate a power-law correlated sequence of on-site po-
tentials "n is to write its Fourier decomposition as follows
[5]:

"n � C���
XN=2
k�1

1

k�=2
cos

�
2�nk
N

	�k

�
: (3)

Here, �k are N=2 independent random phases uniformly
distributed within the interval 
0; 2��, and C��� is a
normalization constant. We will normalize the energy
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FIG. 1. Asymptotic dynamics (t� �B) of the Wannier am-
plitudes  n�t� of a biased wave packet (� � 10 at t � 0 and
F � 0:1) in a lattice with N � 300 sites, for (a) � � 0:5 and
(b) � � 3:0. Light and dark regions indicate higher and lower
probability amplitudes, respectively.
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long-range nature of the potential correlations results
from the power-law dependence of the amplitudes on
the wave vector characterizing each Fourier component.
Several stochastic processes in nature are known to gen-
erate long-range correlated random sequences which
have no characteristic scale, for example, in the nucleo-
tide sequence of DNA molecules [12]. The relevance of
the underlying long-range correlations for the electronic
transport in DNA has been recently discussed in Ref. [13].
Furthermore, interface roughness appearing during
growth often displays height-height correlations with
power-law spectra [14]; thus, the subsequent random
potential arising from the rough interface would be
long-range correlated. Recently, transport properties of
systems with long-range correlated disorder was ex-
plored, both theoretically and experimentally, in the de-
sign of devices for filtering of electrical and optical
signals [15].

Having introduced the model of disorder, we can solve
(2) numerically by means of an implicit integration al-
gorithm [16]. The initial condition is set to a Gaussian
wave packet of width � and centered at n0 � N=2:

 n�0� � A��� exp
��n� n0�
2=4�2�; (4)

A��� being the normalization factor. Once Eq. (2) is
solved for the initial condition (4), we compute the
mean position of the wave packet (centroid):

x�t� �
XN
n�1

�n� n0�j n�t�j2: (5)

It is to be noticed that all eigenstates of the Hamiltonian
(1) contribute to x�t�.

It is well known that a uniform electric field applied to
a periodic lattice causes the dynamic localization of the
initially extended states of an electron and gives rise to an
oscillatory behavior of the electron wave packet, the so-
called Bloch oscillations [9]. The length of the segment
over which the electron oscillates (twice the amplitude)
and the period of these oscillations are estimated from
semiclassical arguments to be (in dimensionless units)
LF � W=F and �B � 2�=F, respectively (e.g., see
Ref. [17]), where W is the width of the Bloch band in
units of the coupling integral J (W � 4 in our case).
Notice that this approach requires slowly varying wave
functions to be valid, implying that LF > 1. A similar
condition was pointed out in Ref. [18]. The question we
aim to clarify is to what extent the corresponding phe-
nomenology will be valid if long-range correlated disor-
der, which allows for a delocalized phase, is present; in
other words, whether the biased phase of extended states
bounded by two mobility edges behaves similarly to a
biased Bloch band. If so, it provides us with a method to
measure the energy width of the delocalized phase W0

from the relationship L0
F � W0=F, where L0

F is twice the
amplitude of the oscillatory motion of the centroid.
Below, we present a numerical proof of this conjecture.
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In Fig. 1, we show the asymptotic dynamics (t� �B)
of the Wannier amplitudes  n�t� of an initial Gaussian
wave packet  n�t� (� � 10 at t � 0 and F � 0:1) calcu-
lated for two values of the exponent �, 0.5 (the phase of
delocalized states is absent in the unbiased system) and
3.0 (the phase of delocalized states is present in the
unbiased system). At � � 0:5 [see Fig. 1(a)], the disorder
is almost uncorrelated and the system is similar to the
standard Anderson model, with no signatures of Bloch
oscillations. On the contrary, the plot in Fig. 1(b) calcu-
lated for � � 3:0 shows an oscillating in time pattern.
This result suggests that Bloch oscillations can take place
even in the presence of disorder.

The time-domain evolution of the centroid, x�t�, pro-
vides more detailed information about what is happening.
In Fig. 2, one can see that there are no signatures of Bloch
oscillations for � � 0:5 (dotted line), at least for a mod-
erate field amplitude. Oscillations, which are present at
the very beginning, achieve in a short time a weakly
fluctuating (stationary in average) value. This is a
clear indication of the existence of disorder-induced de-
coherence effects, as is expected for the localized regime.
On the contrary, at � � 3:0 the centroid displays an
197402-2



0 200 400 600 800 1000
t

-16

-12

-8

-4

0

x(
t)

FIG. 2. Time-domain dynamics of the centroid of a biased
wave packet (� � 10 at t � 0 and F � 0:25) in a lattice with
N � 500 sites. Dotted lines correspond to � � 0:5 and solid
lines to � � 3:0.
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FIG. 3. Time-domain dynamics of the centroid of a biased
wave packet (� � 10 at t � 0) in a lattice with N � 1000 when
� � 3:0, for (a) F � 0:125 and (b) F � 0:5. Dotted lines bound
a region of size L0

F within which the wave packet oscillates for
a long time.
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FIG. 4. Fourier transform of the centroid of a biased wave
packet (� � 10 at t � 0 and F � 0:5) in a lattice with N � 500
sites, for � � 0:5 (upper panel; notice the magnification factor)
and � � 3:0 (lower panel). The inset shows the variance �2

! of
~xx�!� as a function of � for different values of the applied
electric field. Results were obtained by averaging over 1000
realizations of the disorder.
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oscillatory, amplitude-modulated pattern after an initial
transient, where the amplitude of the oscillations is re-
duced (solid line). This oscillatory displacement of the
wave packet is not accompanied by in-phase oscillation of
its width. In other words, breather modes are absent for
the specified initial condition.

Valuable information can be extracted from a detailed
inspection of the centroid dynamics. First, we notice that
the period of the oscillations is a well-defined quantity, as
is seen from Fig. 3. Furthermore, within the numerical
uncertainty, its value is equal to �B � 2�=F, being the
period of Bloch oscillations in a homogeneous lattice. At
the initial stage of the motion, the spatial region within
which the wave packet oscillates is roughly given by 4=F,
as for an ideal Bloch band. Disorder results in a relatively
fast decrease of the oscillation amplitude. After this
transient stage, oscillations are not damped further and
remains amplitude modulated with an envelope which
depends on the realization of disorder. Dotted lines in
Fig. 3 bound the spatial region within which the wave
packet oscillates for a long time. On average, the width of
this region L0

F is found to be L0
F �W0=F, where W0 is

independent of the applied fieldF. From the data in Fig. 3,
we obtain W0 � 1. This value agrees remarkably well
with the width of the band of extended states reported
in Ref. [5] for � � 3:0. Thus, we arrive at the main
conclusion of this work; namely, there exist clear signa-
tures of Bloch-like oscillations of a biased Gaussian wave
packet between the two mobility edges.

To provide further confirmation of this claim, we cal-
culated numerically the Fourier transform of the cent-
roid, ~xx�!�, as shown in Fig. 4. Results were obtained by
averaging over 1000 realizations of disorder. For � � 0:5,
the Fourier transform ~xx�!� is rather broad, suggesting
that x�t� is similar to a white noise signal. On the con-
trary, for � � 3:0 the Fourier transform ~xx�!� shows a
well-defined, narrow peak at about ! � F, despite aver-
aging. The variance of ~xx�!�, �2

!, displays a rather differ-
ent trend below and above � � 2:0, as seen in the inset of
Fig. 4. For �< 2:0, the Fourier transform is broad, but for
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� > 2:0 the width of the Fourier transform is rather small
and independent of the electric field. The onset for the
appearance of Bloch oscillations � � 2 (see the inset of
Fig. 4) is in excellent agreement with the value obtained
in Ref. [5] for the occurrence of the phase of extended
states.
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FIG. 5. Time-domain dynamics of the centroid of a biased
wave packet, with initial condition  n�0� �  nn0 , in a lattice
with N � 1000 sites when � � 3:0, for F � 0:125.
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The above results for F � 0 were obtained with a
relatively broad wave packet (�� 1) with initial velocity
equal to zero. Consequently, its Fourier components span
a very narrow set of states at the bottom of the band. We
also performed a study for initial moving wave packets
located initially deep in the band. In short, in the very
beginning the wave packet explores the entire band in
either case and oscillates within a spatial region of size
4=F. On increasing time, the amplitude of x�t� is always
reduced to a region of size L0

F � W0=F, where W0 is the
width of the delocalized phase. This picture changes
slightly for narrower initial wave packets, for which the
large-amplitude transient is absent. Figure 5 shows the
centroid dynamics of an initial Kronecker  wave packet
at � � 3:0 and F � 0:125. The extent of the spatial
region within which the wave packet asymptotically os-
cillates is again L0

F � W0=F. Thus, we can confidently
state that Bloch-like oscillations are rather insensitive to
initial conditions.

We studied a biased random tight-binding model where
the on-site disorder is long-range correlated with the
power spectrum S�k� � 1=k�, � > 0. The unbiased
model supports a phase of delocalized states in the center
of the band provided � > 2 [5]. We found clear signatures
of Bloch-like oscillations for � > 2 and their absence for
�< 2. The period of the oscillations agrees well with the
period in an ideal Bloch band. Thus, the amplitude of the
oscillations provides a direct way to estimate the energy
difference between the two mobility edges of the delo-
calized phase. We found that this energy difference is in
perfect agreement with the results reported in Ref. [5].
This finding opens the possibility to experimentally mea-
sure the bandwidth of the delocalized phase. Actual
technological advances made it possible to monitor the
amplitude of Bloch oscillations in uniform semiconductor
superlattices [19]. Recently, intentionally disordered
superlattices were used to demonstrate the absence of
localization in short-range correlated disordered systems
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[4]. Thus, we conjecture that intentionally disordered
superlattices with long-range correlated disorder would
allow for a clearcut validation of the present results.
In addition, metallic rings threaded by magnetic
fields linearly rising in time also display Bloch oscilla-
tions [18], thus opening new experimental ways to test our
predictions.
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