
P H Y S I C A L R E V I E W L E T T E R S week ending
7 NOVEMBER 2003VOLUME 91, NUMBER 19
Nonlinear � Model Method for the J1-J2 Heisenberg Model:
Disordered Ground State with Plaquette Symmetry

Ken’ichi Takano,1 Yoshiya Kito,2 Yoshiaki Ōno,2,* and Kazuhiro Sano3
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A novel nonlinear � model method is proposed for the two-dimensional J1-J2 model, which is
extended to include plaquette-type distortion. The nonlinear � model is properly derived without
spoiling the original spin degrees of freedom. The method shows that a single disordered phase
continuously extends from a frustrated uniform regime to an unfrustrated distorted regime. By the
continuity and Oshikawa’s commensurability condition, the disordered ground states for the uniform
J1-J2 model are plaquette states with fourfold degeneracy.
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state interpreted as a 2D array of plaquette singlets is fied 2D NLSM method is a purpose of this Letter. Using
The two-dimensional (2D) J1-J2 model is a frustrated
Heisenberg model with nearest neighbor (NN) and next
nearest neighbor (NNN) antiferromagnetic exchange in-
teractions on a square lattice. The model with spin mag-
nitude S � 1

2 is realized in mother materials of cuprate
superconductors, La2CuO4, YBa2CuO6, and Sr2CuO2Cl2
as small-J2 systems [1,2]. Recently found materials,
Li2VOSiO4 and Li2VOGeO4, are also described by the
model in the case of J2=J1 � 1 [3,4]. A particular inter-
est for the J1-J2 model is in a gapful disordered state,
which may be formed by frustration under strong quan-
tum fluctuations [5]. The subject has been theoretically
investigated by various methods [1]: e.g., spin-wave
theories [6–8], nonlinear � model (NLSM) methods
[9,10], numerical diagonalizations [11–14], quantum
Monte Carlo (QMC) simulations [15–17], series expan-
sions [18–20], and variational methods [21].

For a system only with the NN interactions (J2 � 0),
the ground state is believed to have an antiferromagnetic
(AF) order. The NNN exchange interactions are expected
to induce strong frustration to break the AF order and to
form a disordered ground state around J2=J1�0:5. A cur-
rent leading QMC calculation [15,16] supports the disor-
dered phase with spin gap for J2=J1 * 0:4. Accepting this
result, the issue is the character of the ground state in the
disordered phase. Candidates examined in recent years
are a uniform resonating-valence-bond (RVB) state [21], a
plaquette state [16,18], a dimer state [19–21], and a state
with both dimer and plaquette structures [17]; their de-
generacies are 1, 4, 4, and 8, respectively. Although
Oshikawa’s commensurability condition [22] is useful to
restrict possibilities, it does not completely select one;
e.g., it requires that a uniform RVB ground state with spin
gap is accompanied with gapless singlet excitations. The
character of the ground state is still under debate.

A disordered state is formed also by distortion in
the exchange constants, even if there is no frustration
(J2 � 0). For a plaquette-type distortion, a disordered
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formed [23]. Here it is a question whether the disordered
state by frustration is essentially the same as that by
plaquette-type distortion. If it is the same, a disordered
phase continuously extends from a regime of strong frus-
tration and weak distortion to a regime of weak frustra-
tion and strong distortion in a parameter space. However,
if not, there exists a phase boundary between them; then
the ground state of the uniform J1-J2 model is not pla-
quettelike. Hereafter we consider the J1-J2 model which
is extended to include a plaquette-type distortion.

Among various methods to analyze spin systems, an
NLSM method is effective to clarify their characters.
The first successful example appeared in one dimension.
A uniform spin chain with NN interactions is mapped
onto an NLSM with an appropriate topological term [24].
Inhomogeneous spin chains with periodicity are treated
by refined and extended NLSM methods [25,26]. For 2D
systems, an NLSM without topological term is derived
for J2 � 0 [27]. For J2 � 0, Chakravarty et al. [9] ana-
lyzed 2D NLSM which represents the uniform J1-J2
model. By applying a renormalization group (RG)
method to the NLSM, they constructed a standard theory
for the quantum phase transition.

Despite the success, there remains ambiguity in the
correspondence of a derived NLSM to the J1-J2 model.
If one uses a naive mapping in literature, a single spin
variable is replaced by the sum of two new variables
representing a slowly varying AF motion and a rapid
fluctuation. This is not justified because the number of
independent variables is abruptly increased. Although the
mapping may phenomenologically produce the correct
NLSM, there is no way to confirm the correctness within
the NLSM method itself. Further the increase of the
degrees of freedom leaves ambiguity for the choice of
the cutoff. In one dimension, the problem of the degrees
of freedom has been overcome in generalized formula-
tions [25,26]. However such a reasonable theory in two
dimensions has not been proposed. To construct a quali-
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FIG. 1. (a) Lattice of the J1-J2 model. Lattice sites are de-
noted by small circles and exchange constants are by various
lines between the circles. (b) A plaquette consisting of four
sites connected by J1 and J2; this is a block which is a unit in
the NLSM formulation. A variable nj in the pth block is
relabeled as n���p
, where � and � take � or 	. The value
of (�, �) at each site is shown. (c) Another kind of plaquette
consisting of four sites connected by J01 and J02.
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the NLSM method, to determine the character of the
ground state for the 2D J1-J2 model is the final purpose.

The J1-J2 model with plaquette-type distortion is rep-
resented by the Hamiltonian:

H �
X
hi;ji

J1;ijSi � Sj �
X
hhi;kii

J2;ikSi � Sk; (1)

where Si is the spin of magnitude S at site i. The first and
the second summations are taken over NN and NNN
pairs, respectively, in a square lattice. J1;ij takes J1 or
J01, and J2;ik does J2, J02, or J002 as shown in Fig. 1(a). The
system is reduced to the uniform J1-J2 model when J1 �
J01 and J2 � J02 � J002 . In the limit of J01 � J02 � J002 � 0,
the lattice is an assembly of isolated plaquettes each of
which consists of four spins connected by J1 and J2
[Fig. 1(b)]. Also, in the limit of J1 � J2 � J002 � 0, the
lattice is an assembly of another kind of isolated pla-
quettes; each consists of four spins connected by J01 and
J02 [Fig. 1(c)]. Hamiltonian (1) is invariant under the
simultaneous exchanges of J1 and J01, and of J2 and J02.
The symmetric case of J1 � J01 and J2 � J02 includes the
uniform J1-J2 model.

We consider the quantum Hamiltonian (1) in the clas-
sical Néel ordered region. The expectation value of Sj for
a spin coherent state at imaginary time � is given as

hSji � �	1
jSnj��
 with n2
j � 1; (2)

where �	1
j is a symbol taking � or 	 depending on the
sublattice which the jth site belongs to. The partition
function is then written in a path integral formula as

Z �
Z
D�nj��
�

Y
j

��n2
j ��
 	 1�e	A: (3)

The action A at temperature 1=� is given by

A � iS
X
j

�	1
jw�nj� �
Z �

0
d�H��
: (4)

The first term is the Berry phase term with the solid angle
w�nj� which the unit vector nj��
 forms in period �.H��

in the second term is given by

H��
 �
1

2
S2
X
hi;ji

J1;ij�ni��
 	 nj��
�2

	
1

2
S2

X
hhi;kii

J2;ik�ni��
 	 nk��
�2; (5)

where the constraint n2
j ��
 � 1 in the � function of Eq. (3)

has been used. Hereafter we do not explicitly write the �
dependence of nj��
.
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We adopt a plaquette of Fig. 1(b) as a unit of trans-
formation and call it a block; we would choose another
kind of plaquette in Fig. 1(c) as a block. We relabel
four variables, nj’s, in the pth block as n���p
, n�	�p
,
n	��p
, and n		�p
, as shown in Fig. 1(b). By anal-
ogy with the one-dimensional case [26], we transform
them as

n ���p
 � m�p
 � a���L0�p
 ��L1�p
 � �L2�p
�:

(6)

Here L0�p
, L1�p
, and L2�p
 describe small fluctuations
around m�p
. According to the variable transformation,
four original constraints, �n���p
�2 � 1 (�; � � ), are
changed to four new constraints, m2�p
 � 1 and m�p
 �
Lq�p
 � 0 (q � 0, 1, 2). Thus we obtained a new set of
variables, the number of which is the same as that of the
original variables. This plaquette-based transformation is
inevitable to keep the original degrees of freedom even in
the uniform J1-J2 model.

In the continuum limit, the first term of the action
(4) is written as iS

P
p

P
�;� ��w�n

���p
� � i�S=a
 �R
d�d2rL0�m� @�m
 with lattice spacing a. For the

second term of Eq. (4), we substitute Eq. (6) into Eq. (5)
and take the continuum limit. Thus, to the leading order
of derivatives and fluctuations, we have the field-theoretic
action
A � S2
Z
d�d2r

�
i
Sa

L0 � �m� @�m
 � J00��@xm
2 � �@ym
2 	 2@xm �L1 	 2@ym �L2� � 2�J1 � J01
L
2
0

� �J0 � J00
�L
2
1 �L2

2


�
(7)
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FIG. 2. Phase diagram in the space of distortion parameter #
and frustration parameter  ( � J2=J1). The bold solid line for
S � 1 separates the classical Néel and the classical collinear
phases. The region between the bold solid and the thin solid
lines is the gapful plaquette phase for S � 1

2 . The phase
boundaries for S � 1, 3

2 , and 2 are also shown by dashed lines.
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with J0 � J1 	 J2 	 J002 and J00 � J01 	 J02 	 J002 . This
action includes all the low-energy excitations surviving
the continuum approximation, since the original degrees
of freedom are not spoiled in the variable transforma-
tion (6). In Eq. (7), L0, L1, and L2 are massive fields [28],
so that they are irrelevant to a symmetry change of the
ground state.

Now we integrate out the partition function for the
action (7) with respect to massive fields L0, L1, and
L2. The resultant partition function contains the NLSM
action:

Aeff �
Z
d�d2r

�
1

8a2�J1 � J01

�@�m
2

� S2
�
1

J0
�

1

J00

	
	1
��@xm
2 � �@ym
2�

�
:

(8)

There appears no topological term even if the NNN
interactions exist. The bare spin-wave velocity is read as
v � 2





2

p
Sa�J1 � J01


1=2�1=J0 � 1=J00

	1=2. Action Aeff

keeps the original invariance against the simultaneous
exchanges of J1 and J01, and of J2 and J02, meaning that the
same action is obtained if we use a plaquette in Fig. 1(c),
instead of Fig. 1(b), as a block. This result reflects the fact
that the variable transformation (6) does not restrict the
spin motion to form a singlet on the plaquette of Fig. 1(b).

We apply the RG analysis by Chakravarty et al. [9] to
the present NLSM. We first introduce rescaled dimension-
less coordinates, x0 � �v�, x1 � �x, and x2 � �y, with
a momentum cutoff � of order a	1. The NLSM action (8)
is then rewritten as

Aeff �
1

2g0

Z
d3x

�
@m
@x�

	
2

(9)

with coupling constant g0 �




2

p
�aS	1�J1 � J01


1=2 �
�1=J0 � 1=J00


1=2. By RG equations up to one-loop ap-
proximation, the quantum phase transition from the AF
ordered (Néel) state to a disordered state takes place at
g0 � 4�. Rewriting this, the phase boundary in the space
of the exchange parameters is given by

�J1 � J01

�
1

J0
�

1

J00

	
�

2

�
with � �

�
�a
2�S

	
2
: (10)

Parameter � represents the strength of quantum effect;
� � 0 in the classical spin limit.

To make the NLSM method complete, we determine
the cutoff � by considering the number of degrees of
freedom for the square lattice. The variable m is origi-
nally defined for each block of size 2a� 2a [Fig. 1(b) and
Eq. (6)] and is taken a continuum limit. Hence the corre-
spondence of the momentum spaces is expressed as
��=a
2 � ��2, or the cutoff is given by � �






�

p
=a.

Thus Eq. (10) unambiguously determines the phase
boundary between the ordered and the disordered phases.

In the uniform limit (J1 � J01, J2 � J02 � J002 ), the sys-
tem depends only on frustration parameter  � J2=J1
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and Eq. (10) is reduced to  � 1
2 	 �. Hence, for S � 1

2
with � �






�

p
=a, the critical value for  is given as  c ’

0:18. Thus the NLSM method succeeds in producing a
critical value satisfying 0< c <

1
2 without any addi-

tional assumption or interpretation. The value is smaller
than �0:4 estimated by the QMC simulation [15,16]. The
deviation reflects the difference between the dispersions
for spin-wave excitations in the lattice and the continuum
models and may be reduced by adjusting the cutoff. Since
we aim at inspecting the continuity of a phase, we do not
need such a phenomenological adjustment.

In the limit of no frustration (J2 � J02 � J002 � 0), the
plaquette distortion may cause an order-disorder transi-
tion.We denote the strength of the distortion by distortion
parameter # defined as J01��1	#
J1. Then Eq. (10) pro-
duces the critical value #c�2	�	1�


























�	2	2�	1

p
. This

value decreases from 1 to 0 as � increases from 0 to 1
2 .

We now examine the continuity of the ground state
between both the limits above. To be concrete, we pa-
rametrize the exchange constants as J01 � �1	 #
J1,
J02 � �1	 #
2J2, and J002 � �1	 #
J2 for 0 � # < 1.
Equation (10) for the phase boundary is reduced to a
simple form as  � �2	 #
	1 	 1

2��2	 #
�1	 #
	1.
The phase diagram in the #- parameter space is shown
in Fig. 2. The bold line with S � 1 is the classical phase
boundary between the Néel and the collinear phases [28].
The phase boundary of S � 1

2 between the gapful and the
gapless phases for variable m is the thin solid line; the
state above is gapful, while that below is gapless corre-
sponding to the Néel (AF) ordered state. Boundaries for
other spin magnitudes S are also shown by dashed lines.
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The gapful region of m in Fig. 2 extends continuously
from the uniform limit on the  axis (# � 0) to the limit
of no frustration on the # axis ( � 0). Remembering that
fields L0, L1, and L2 are gapful, there is no gapless
excitation throughout the region whether it is triplet or
singlet. Hence, the whole gapful region in Fig. 2 is a single
disordered phase. In particular, the phase continues to the
point of �#;  
 � �1; 0
 [29]. Hence a disordered ground
state on the  axis finally continues to the ground state of
the assembly of isolated plaquettes.

Thus there remain two possibilities for a disordered
ground state of the uniform J1-J2 model, which is on
the  axis in the phase diagram (Fig. 2). First, the trans-
lational symmetry may be spontaneously broken; then the
ground states are fourfold degenerate and one of them
continues to the ground state at �#;  
 � �1; 0
. Second,
the symmetry may not be spontaneously broken; then the
ground state is unique and is a uniform RVB state with
strong fluctuations of plaquette singlets. However, the
second possibility is excluded by Oshikawa’s commensu-
rability condition [22]. Applying it to the present case, a
uniform ground state with triplet excitation gap must be
accompanied with other gapless excitations like singlet
ones. Such gapless excitations do not exist as we have
already shown. We therefore conclude that the disordered
ground states for the uniform J1-J2 model are fourfold
degenerate plaquette states with spontaneously broken
translational invariance.

Finally, we discuss possible experiments to detect the
plaquette state for materials with J2=J1 � 0:45 which
will hopefully be found in the future. In a realistic lay-
ered material, the uniform J1-J2 model is accompanied
with at least weak three dimensionality. Hence, at a finite
temperature, the system will spontaneously break the
translational symmetry to fall into a plaquette phase.
The appearance of a spin gap at the temperature will be
observed. The characteristics of the plaquette state ap-
pear in the dispersion relation, which reflects the in-
variance for the translations of 2a in the x and the y
directions. They will be observed in neutron scattering
experiments. In a material where the spin system weakly
interacts with the lattice, the spontaneous symmetry
breaking for the spin degrees of freedom may induce a
plaquette-type lattice distortion, which will be observed
by x-ray diffraction. Such a distorted system may corre-
spond to a point deviated from the  axis in the plaquette
phase of Fig. 2.
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