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Revisiting the Hanbury Brown–Twiss Setup for Fractional Statistics
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The Hanbury Brown–Twiss experiment has proved to be an effective means of probing statistics of
particles. Here, in a setup involving edge-state quasiparticles in a fractional quantum Hall system, we
show that a variant of the experiment composed of two sources and two sinks can be used to unearth
fractional statistics. We find a clearcut signature of the statistics in the equal-time current-current
correlation function for quasiparticle currents emerging from the two sources and collected at the sinks.
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FIG. 1. Indistinguishable particles from sources 1 and 3 can
reach sinks 2 and 4 by two possible processes whose probability
1 2 1 2

and typically levels off to the uncorrelated value for
amplitudes differ by a phase factor that depends on the statis-
tics of the particles.
The statistics of indistinguishable particles is mani-
fested in the fate of the common wave function for two
particles located at positions r1 and r2 under exchange:

��r1; r2; r3; . . . ; rn� � e�i����r2; r1; r3; . . . ; rn�; (1)

where, in general, other particles may be present at posi-
tions ri, i � 1; 2. The values � � 2n and � � 2n� 1 for
integers n correspond to the familiar instances of bosonic
and fermionic statistics, respectively. In two dimensions,
where the concept of exchange can be unambiguously
defined, � can assume fractional values corresponding
to anyonic statistics. A landmark example of this phe-
nomenon occurs for Laughlin states [1] in the fractional
quantum Hall (FQH) setup. In this system, the anyonic
nature of quasiparticle/quasihole excitations has been
demonstrated [2] and, in particular, the gaining of the
phase factor e�i�� by quasiparticles [3] and quasiholes
[4–6] under exchange, where � is the filling fraction. Of
late, a variety of novel proposals for testing the statistics
of edge-state quasiparticles in Laughlin states have come
forth [7,8].

In this Letter, we propose a setup consisting of two
edge-state quasiparticle sources and two sinks, and the
measurement of current-current correlation for currents
emerging at the two sources and collected at the sinks. At
equal times, the correlator is found to depend only on
average values of currents and a factor cos�� coming
from statistics. As a function of time difference for when
currents are correlated, it shows oscillations with a period
that depends on the fractional charge of the quasiparticle.

Returning to the common wave function of Eq. (1), one
can extract from it various properties, such as filling in of
available states, and N-point correlation functions. A
quantity sensitive to statistics is the two-particle correla-
tion function

g�r1; r2� � N�N � 1�
Z
dr3 . . . drnj��r1; r2:::rn�j

2; (2)

where N is the total number of particles. In systems
composed of a single species of noninteracting particles,
for fermions g�r ; r � necessarily drops to zero at r � r
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r1 � r2 much greater than the mean particle spacing.
For uncondensed bosons, wave function symmetrization
allows g�r1; r2� to reach twice its uncorrelated value. Our
purpose here is to study processes that enable the probing
of anyonic systems for their statistical information.
Specifically, two-particle correlations are manifested in
events such as the ones shown in Fig. 1, where particles
need not scatter, but may merely be detected within a
correlation region in time and space to feel the effect of
statistics [9].

In fact, in the 1950’s, Hanbury Brown and Twiss per-
formed both astronomical and tabletop experiments to
measure correlations in light intensities at two detectors,
which strikingly reflected bosonic statistics [9,10]. More
recently, laboratory experiments measuring analogous
correlations in semiconductors and in free space have
brought out the fermionic statistics of electrons [11].
Turning our attention to Laughlin states, as anyons are
known to exist only within the strongly correlated quan-
tum Hall fluid, simplistic measurements requiring par-
ticles to be detected outside the system would fail.
Moreover, manipulations of quasiparticles within the
bulk are not feasible at present. However, it has been
suggested [12] and experimentally ascertained for � �
1=3 states [13] that weak tunneling of Laughlin quasi-
particles between edge states of a single Hall bar pro-
duces shot noise characteristic of particles with quantized
charge �e. Given the evidence for fractionally charged
quasiparticles, we propose a tunneling geometry that
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realizes the events depicted in Fig. 1 for these particles.
We show that appropriate current-current correlation
measurements in this geometry bring out the fractional
statistics of the quasiparticles.

Our proposed setup is as shown in Fig. 2. Four leads at
the corners of the Hall bar define four edge states denoted
by  � A;B;C;D. Low-energy excitations of the FQH
system correspond to long-wavelength density distortions
of the edge. These excitations can be described by the
chiral Luttinger liquid model [5,6,14], and thus each of
the edge states is characterized by the Hamiltonian

H
0 �

1

4��

Z
�@x��

2dx; (3)

where the bosonic fields � obey the commutation re-
lations ���x�; ���x

0�
 � i��sgn�x� x0���, and their
gradients are proportional to density distortions. Here
we have set the edge-state velocity to unity. Gates allow
for pinching the edge states close to one another [13] to
form the cruciform pattern shown in Fig. 2, thus enabling
interedge quasiparticle tunneling. For each edge state ,
we assume the tunneling to take place from points xj,
where j � 1; 2; 3; 4 for  � A;B;C;D, respectively. Here
we require that the region formed by the tunneling points
be comparable to the size of the quasiparticles. Unlike in
the bulk, a second-quantized description of edge-state
quasiparticles is relatively straightforward to formulate.
We describe particles at the tunneling points by the
creation operators  y

j � �je
�i��xj�, where � denotes

Klein factors. The commutation relations for the bosonic
fields of Eq. (3) ensure that these quasiparticles, when
exchanged with others residing on the same edge, exhibit
the statistics of Eq. (1). The Klein factors ensure that they
do so when exchanged with particles from neighboring
edge states. We pick the convention

 y
j  

y
k � e�i�� y

k  
y
j ; (4)

where j < k for j � 1; 2; 3 and k � 1 for j � 4. Tunneling
FIG. 2. Setup of Hall bar for measuring two-particle pro-
cesses. Leads I-IV define edge states A–D. Pinching these edge
states together allows for interedge quasiparticle tunneling at
points 1– 4.
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of these quasiparticles to neighboring edge states can be
controlled by means of gate voltages. It is described by
the tunneling Hamiltonian

H jk � ujk 
y
j  k � H:c:; (5)

where H.c. denotes Hermitian conjugation,  ’s are as in
Eq. (4), and the u’s denote tunable bare tunneling
strengths. As a variant of the Hanbury Brown–Twiss
experiment, we select the pointsm � 1; 3 as quasiparticle
sources and n � 2; 4 as sinks by raising the potentials of
the edge states A and C with respect to B and D by a
voltage V. As all tunneling occurs in a fixed geometry,
two-particle correlation functions cannot be studied as a
function of spatial separation. However, current-current
correlations can be measured as a function of temporal
separation. These tunneling currents take the form

Imn�t� �
ie�

�h
�umn 

y
m nei

~VVt � H:c:�; (6)

where e� � �e is the charge of the quasiparticle [1,6,12],
and ~VV � e�V= �h. Edge states then carry measurable
currents

II �
�e2

h
V � I12 � I14; III � I12 � I32;

IIII �
�e2

h
V � I32 � I34; IIV � I34 � I14;

(7)

where in Fig. 2, I# are currents going into leads #.
The finite-temperature average values of these cur-

rents can be calculated using nonequilibrium Keldysh
techniques that treat tunneling perturbatively (see, e.g.,
Ref. [12]). To summarize the treatment, from Eq. (3), we
derive an action for each of the four edge states. Away
from the tunneling points xj, the edge states are de-
scribed by free fields, whose form is explicitly obtained
in terms of the fields at the tunneling points using equa-
tions of motion. These free fields are integrated out to
obtain an effective action described by fields �j at
points xj. We then introduce a generating functional in
terms of backwards and forwards real-time paths
��
j �t�, which enables us to obtain expectation values. In

equilibrium, the correlation function Cj  h’j’ji and
response function Rj  h~’’j’ji, where ��  ’� 1

2 ~’’,
satisfy the fluctuation-dissipation theorem Cj�!� �
coth� �h!=2kT�Rj�!�. The effect of tunneling is treated
perturbatively.

To second order in tunneling, the technique described
above gives the following form for the average currents:

hImn�t�i � �e
�
2umn
�h

�
2Z

dta � sin ~VV�ta � t�

� sinF�ta � t�e�f�ta�t�; (8)

where F�t��
R
d!!�1 sin!t and f�t�2�

R
d!!�1 �

coth��h!=2kT��sin!t=2�2 originate from response and
correlation functions, respectively. Evaluating the above
196803-2
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gives for the differential conductance contributions,
dImn=dV � V2��2G�e�V=kT�, G�x! 1� ! const, which
increases with decreasing voltage. Thus, at low tempera-
tures, which is desirable for keeping thermal noise mini-
mal, the voltage V must be held large compared to the
bare tunneling strength for the perturbative treatment to
remain valid.

We now analyze current correlations of particles
emerging from the two sources detected at the two sinks.
In principle, a variety of current-current correlators con-
tain information on statistics. As was originally shown by
Hanbury Brown and Twiss, even particles from a single
source can be distributed into two detectors to exhibit
statistical correlations [9,10]. Thus, focusing on one set of
source-drain edge states and measuring correlations be-
tween the transmitted and reflected currents [15] along
the source edge tate, as was done for the integer quan-
tum Hall system [11], can give statistical information.
Alternatively, the current-current correlations between
currents from one source collected at two different
drains can be calculated [15], as has been done explicitly
for the FQH setup [8]. Here, we find that a clearcut sig-
nature of anyonic statistics comes from events shown in
Fig. 1. To extract information on statistics from these
events, we propose the measurement of the following
time-translation invariant current-current correlator:

C �t� t0�  h�I12�t��I34�t
0� � �I14�t��I32�t

0�i; (9)

where �I  I � hIi.
The correlator C can be obtained from three sets of

measurements. The first would measure correlations
h�III�t��IIV�t

0�i for currents III and IIV measured �t �
t� t0 apart. The other two sets of measurements would be
performed in the absence of sources 1 and 3, respectively,
realized by controlling the appropriate tunneling
strengths umn by means of gate voltages. It is important
to note that these other sets of measurements do not
require a change in sample, but can be achieved merely
by applying the required gate voltages in a single sample.
In each of these instances, currents into leads II and IV
would have the form ~IIII � Im2 and ~IIIV � Im4 with m � 3
and m � 1, respectively. Then one could measure cross
orrelations ~CC, for current from one source held at the same
potential V as in the first case, into two drains, where
~CCm��t� � h�Im2�t��Im4�t0�i, with m � 3; 1, respectively,
and �t � t� t0. These correlations themselves carry sta-
tistical information, but are complicated by the fact that
the source edge states are endowed with their own dy-
namics. Nevertheless, as seen in Ref. [8], one can procure
valuable information from them similar to that contained
in our sought-after correlator C�t� t0� of Eq. (9). This cor-
relator C can now be obtained by subtracting the contri-
butions of the latter two measurements from the first:

C ��t� � h�III�t��IIV�t0�i � ~CC1��t� � ~CC3��t�: (10)

In fact, Ref. [15] proposes completely analogous sets
196803-3
of measurements in a similar four point tunneling setup
in the integer quantum Hall system, and there too, a
correlator analogous to C provides key information on
statistics.

The correlation can be evaluated in the perturbative
Keldysh approach outlined above. To lowest nonvanishing
order, i.e., fourth order in tunneling, it takes the form

C ��t� � hI12�t�ihI34�t0�i � hI14�t�ihI32�t0�i � C}��t�:

(11)

The function C}��t� is the piece in the perturbation that
connects all points 1–4 of Fig. 2 and thus contains in-
formation on the statistics. Explicitly, it is given by

C}��t� � cos���e��2
Y
m;n

2umn
�h

Z
dtadtb

��cos ~VV�t� t0 � ta� tb�

� cos ~FFe�~ff
; (12)

where m � 1; 3 and n � 2; 4. Here ~FF  1=2
P
j�a;b �

�F�t� tj� � F�t0 � tj�
 and similarly ~ff involve the func-
tions F and f, which appear in Eq. (8). When the time
difference �t is small, i.e., �h=�t� kT; e�V, one expects
the correlations to be maximal [9]. In fact, in this limit
and for uniform scattering umn � u (which we assume
from here on), upon evaluating Eq. (12), the current
correlation defined in Eq. (9) reduces to the simple and
suggestive form

C ��t! 0� � 2�1� cos��
hI12ihI34i; (13)

where the behavior of the average currents hIi is given
in Eq. (8). This is consistent with the fermionic limit
C�0� � 0, � � 1, which reflects the fact that two elec-
trons cannot be in the same place simultaneously, and the
bosonic limit of maximal ‘‘bunching’’ for � � 0.

The function C��t� for finite �t carries telling infor-
mation on two-particle correlations for edge-state quasi-
particles. At T � 0, the integral of Eq. (12) can be
evaluated using contour integration to give

C}��t�
2 cos��

�

�
4u2e�

�h2

�
V
,0

�
2�e�e

�V=,0

V
� cos ~VV�t=2

��2����1� 2��

�
2

�

�
Re

	
e�i ~VV�t=2

Z 1

0
e�rr���r� i ~VV�t���


�
2
;

(14)

where ,0, the excitation gap for the bulk Hall fluid, acts
as a high-energy cutoff. The resulting behavior of the
current-current correlations is shown in Fig. 3.

The function C��t� contains three different aspects
of the edge-state quasiparticles. First, central to our
problem and akin to the two-particle correlation function
of Eq. (2), it shows maximal statistical correlation at
�t � 0. As shown by the factor of cos�� in Eq. (13), it
can be either smaller or larger than the uncorrelated
value, depending on the (anti)bunching nature of the
196803-3
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FIG. 3. Normalized correlation function of Eq. (9), C��t�=
�2hI12ihI34i�, at zero temperature, as a function of separation
time �t for filling fraction � � 1=3. Here we have chosen
~VV � 60 in dimensionless units.
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quasiparticles. Second, C��t� reveals oscillations of pe-
riod h=e�V and identifies e� � �e as the quantum of
quasiparticle charge that couples to the applied voltage.
Note that, for Laughlin quasiparticles, statistics and
charge are directly related to one another, in that the
phase factor acquired under exchange may be interpreted
as the Aharnov-Bohm term picked up by the charged
quasiparticle [4,5]. However, as the connection between
charge and statistics is more complicated for non-
Laughlin states [5,16], in these cases C��t� becomes
important in bearing information on both aspects, dis-
tinct from one another. While the dependence on charge
and statistics ought to hold regardless of the effective
theory used to describe the FQH system, the third feature
reflects the chiral Luttinger liquid description of the edge
state; at large separation time, C decays to the uncorre-
lated value in the power-law form C}��t� � j ~VV�tj�2�,
j ~VV�tj ! 1, where the power-law behavior is char-
acteristic of Luttinger liquids. [Note also that the static
correlation function of Eq. (2) decays as g�r1; r2� �
jr1 � r2j

�2� within a single edge state, in contrast to
the jr1 � r2j

�2 decay appropriate to electrons in a one-
dimensional Fermi liquid.] At finite temperatures, as seen
from Eqs. (11) and (12), we expect the maximal correla-
tion function C��t � 0� to cross over to its uncorrelated
value at temperatures kT � e�V.

In conclusion, we have seen that the principle of ex-
tracting information on statistics by means of two-point
measurements can be applied equally well to fractional
particles realized in current laboratory conditions as to
the fermions and bosons found in nature. Characteristic
correlations in the detection of two particles at zero
separation in space and time, their decay in space or
time, and their oscillations over conjugate sets of vari-
ables, be they energy and time or position and momentum
[9], hitherto observed for fermions and bosons, are seen
to be manifest in processes involving anyons. Given the
current cutting-edge experimental developments in quan-
tum Hall physics, measurements on edge-state quasipar-
196803-4
ticles such as the ones proposed here and in other work
[7,8] ought to be within experimental reach and thus may
provide signatures of fractional statistics for the first time.
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