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Spin Current through a Quantum Dot in the Presence of an Oscillating Magnetic Field
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Nonequilibrium spin transport through an interacting quantum dot is analyzed. The coherent spin
oscillations in the dot provide a generating source for spin current. In the interacting regime, the Kondo
effect is influenced in a significant way by the presence of the processing magnetic field. In particular,
when the precession frequency is tuned to resonance between spin-up and spin-down states of the dot,
Kondo singularity for each spin splits into a superposition of two resonance peaks. The Kondo-type
cotunneling contribution is manifested by a large enhancement of the pumped spin current in the strong

coupling low temperature regime.
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The rapid progress of nanoelectronics and information
technologies has prompted intense interest in exploiting
the interplay of electron charge and spin properties, which
results in the emergence of semiconductor spintronics
[1,2]. One of the most important spin-based electronic
devices is a mesoscopic quantum dot (QD) system, in
which the spin coherence time for electrons or nuclei is
relatively long [3,4]. Spin-polarized transport through a
QD has been extensively investigated recently. It has been
shown theoretically [5] and demonstrated experimentally
[6] that a QD system will function as a phase-coherent
spin pump in the presence of sizable Zeeman splitting. A
QD-based spin battery device has been proposed by use of
a combination of a vertical magnetic field and an oscillat-
ing electric field [7]. Very recently, spin-polarized current
has been detected from a quantum point contact (QPC)
[8] and from Coulomb-blocked QDs [9]. For the latter,
due to the large charging energy at low temperatures, a
more subtle effect — the creation of new states of many-
body character at the Fermi level by the Kondo effect —
is expected to occur [10]. Although the effect of Kondo
resonance on the charge current has been well studied in a
QD [11], its influence on the spin current and spin detec-
tion might be equally significant, since it provides a spin-
flip cotunneling mechanism.

In this Letter we explore spin-current response to a
magnetic-oscillating quantum dot, which is schematically
shown in Fig. 1. The single-electron levels in the dot are
split by an external magnetic field By, &, —en =
gmpBy, where g is the effective electron gyromagnetic
factor and up is the Bohr magneton. The two spin levels
are coupled by a rotating magnetic field (B, coswt, B;
sinwt), applied perpendicularly to the field B,. The pos-
sibility of the ESR setup based on GaAs QD has been
discussed in Ref. [12]. The QD is in some sense similar to
an oscillating magnetic dipole moment of a two-level
atom. However, we show that the spin transport proper-
ties are highly nontrivial for the QD system, due to the
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many-body excitations and coupling with an external
electrode.

Theoretical formalism.—The model
under consideration can be written as

Hamiltonian

H=>Y¢.,dsd, + Ud} did} d,

— g,LLBBl(dT*dle"‘”t + ddeef"“”) + Zeka,j{rak,,
ko

+ > [Viaf,d, + Hel (1)
ko

Here d and aj, create an electron of spin o in the QD
and in the lead, respectively. The possible coupling be-
tween the magnetic fields and the lead can be effectively
obviated by choosing antiferromagnet as the lead [13] or
via the “g-factor engineering” [12,14]. A similar model
has been proposed for electrical detection of single-
electron spin resonance [15,16].

The time dependence of the Hamiltonian (1) may be
eliminated by introducing a unitary transformation U =
¢~ @/ (aan—aan)+(d} d,~di dy)] (h is set to be unity)
and thus redefining the Hamiltonian in the rotating refer-
ence (RF) as follows:
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FIG. 1. Model setup for spin transport through a QD. Because
of the imbalance between spin-up and spin-down chemical
potentials (see text), the electron may tunnel from the spin-
down channel, through the QD, to the spin-up channel.
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where &,, = €4, = 4 and €, = €, = % are the dressed
dot and lead levels for up and down spins, respectively.
One can see that the rotating magnetic field, in effect,
shifts lead electron energy to the opposite directions for
up and down spins. This spin-oriented energy splitting
originates from the hybridization term (the last term) in
(2), which propagates energy from the QD to the lead.
Thus the spin-up chemical potential is now u; = —w/2
(the reference energy is set Er = 0), while u| = w/2.
The charge chemical potential is still w, = (u; + @)/
2 = 0. The distinction between u, and u, was recently
discussed in Ref. [17].

The physical picture of spin-current generation is as
follows: Because of the one-photon difference between
the spin-down and spin-up chemical potentials of the
lead, an electron in the spin-down channel can tunnel
into the & level in QD. After a spin-flip process given by
B, term in (2), the electron can tunnel out of the QD into
the spin-up channel. This process repeats, so a steady spin
current builds up in the lead. Note that the net charge
current is zero because there is only one electrode in the
system. This zero charge current feature is retained when
more electrodes are taken into account with no bias
voltage applied between them. To calculate the spin cur-
rent we make use of the nonequilibrium Green function
formalism.

In the absence of hybridization and Coulomb interac-
tion, the QD is reduced to a simple driven two-level sys-
tem (TLS). Its dynamics is featured by a coherent weight
transfer (Rabi oscillations) between the two spin states,

s <— T(fT(e)cosng + fi(e)sin’*¢
0 = " sing coso[fi(€) — fi(e)] fi(e)sin? + f,(€)cos? b

Substituting the expressions for G5 into (4), we obtain
the expression for the tunneling spin current

T _

5= [LWGHOZ; GO if(e ~ fioh ©
where (3¢ )y = sin? ¢(cos? @), and (X)) gz = sin¢p cos .
Equation (6) can also be obtained by a direct application
of the relation between the Green function and the trans-
mission matrix [18], and thus reduces to the usual
Landauer formula for two spin channels. Since the elec-
trons are flowing from spin-down channel to spin-up
channel, we define the total spin current as J; = J|—
Jy = —2J;. Figure 2(a) shows the noninteracting spin
current versus rotating frequency at different tempera-
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which is complete when the rotating frequency is tuned to
the resonant condition wr = gugBg. The spin oscillation
period is T = 7/Q, where Q = \/A? + 4(guB,)? is the
Rabi frequency and A = wy — @ denotes the detuning
from the resonance.

To proceed we introduce a canonical transformation

() u(e) winu= (500 )

where ¢ = tan"'[2gugB;/(Q1 — A)]. In terms of new
fermion operators, the dot Hamiltonian in Eq. (2) has a
diagonal form 3 ,e.,cyc, + Uciciecp with g, =

(eq + €4 = Q)/2 for the up and down spins.
The spin-o, say, spin-T, current can be calculated
using the nonequilibrium Green functions of the QD [18]:

ie
Ji==

< [ roiG () + FeIGHO) - Ga@Tuy,

“

where T'(e) = 27>, |Vi|*6(e — €) and [GI (1)), =
i{c},(0)c,(1)) are the lesser Green functions of the dot,
A =G, — G¢ is the spectral function matrix, and
f-(€) = f(e — u,) are the Fermi distribution functions
for the spin-up and spin-down channels.

The noninteracting spin current.—In the noninter-
acting (U = 0) case or within the mean-field (MF)
treatment of the Coulomb interaction for finite U, the
retarded Green function matrix is given by [GL(€)],, =
S,o[8i 1 (e) — Sh(€)] 4. Here 3 = —iT'l is the tunnel-
ing contribution to the retarded self-energy, and g’(e) is
the unperturbed Green function matrix of the dot, which
in the mean-field approximation has a simple Hartree-
Fock type [gg(e)]oa/ = 60'0'/{[7165/(6 — €g — U)] +
[ = ng)/(e — €5)]} with n., = {ctfc,). The lesser
Green functions in (4) are obtained via the Keldysh
equation GS = G/%5GY? with the lesser self-energy
matrix

sing cosp[f|(€) — fi(€)] ) (%)

tures. The undressed spin levels are set to lie deeply below
Er. One can see that at low temperature (solid line), the
spin-current peak is not at, but far from w = wg. This is
because at w = wp the dressed spin-up level & is still
lower than wu; and thus the electron in the dot cannot
tunnel out via small thermal excitation. Because of the
state exchange in QD, as shown in the inset of Fig. 2(a),
when o increases further, crossing the avoided cross-
ing between the two spin levels, the upper eigenstate is
dominated by spin component |1) while the lower state
by [l). Thus when the upper level is higher than u;, spin
tunneling processes occur, and a peak develops in the
current spectrum. When the temperature is increased to
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FIG. 2. (a) Noninteracting spin current at different tempera-
tures with the undressed spin levels set e 4 = —2.5, g4y = —1.5;
(b) Contour plot of spin current as a function of gate voltage
and rotating frequency. The spin levels in the dot are modulated
by the gate voltage as g,,(V,) = g4, + eV, with g4 =1,
g4 = 2. Other parameters are I' = 0.1 and guzB; = 0.2.

kpT ~ |y — &4, the spin-current peak shifts to w = wg
with a larger peak amplitude. Further increasing tem-
perature such that k3T > @ will smear out the mismatch
between u; and w, and thus the spin-current amplitude
begins to decrease, as shown in Fig. 2(a). When the gate
voltage V, is modulated such that &,, are at the interval
between w| and w4, then the spin-current peak will occur
exactly at o = wy, [see Fig. 2(b)].

The model can also illustrate the spin-current genera-
tion in the Coulomb blockade regime when Coulomb
interaction is treated in the mean-field formalism. As an
example, we show in Fig. 3 the spin current versus gate
voltage for several values of w. Two Coulomb peaks with
interval U can be resolved, and as in Fig. 2, the current
amplitude increases when the magnetic field frequency is
tuned towards to two-level resonance w = wg.

The electronic correlation effect.—In the low tempera-
ture, strong coupling, and large charging energy regime,
correlation effects enter and are expected to significantly
influence the spin transport. To illustrate correlation ef-
fects, we again use the equation of motion method (EOM)
[19] to solve the retarded Green function in (4). The EOM
is known to give the right qualitative behavior at low
temperatures [19]. In the infinite-U limit, we obtain
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FIG. 3. Spin current versus gate voltage for different rotating
frequencies with U = 2. Other parameters are the same as in
Fig. 2(b).
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Gi(e) = [el — &. — Xi(e) — Xi(e)] ' (T —m,), (7)

where (8,) ;o = 0, &, and the interaction self-energies
are given by [21(&)l,y = 8, S lsin?pIVi 2 f(es,)]/
[e — €r — €co + e ]t H{cos? DIV P fe45)] /€ — €45~
8o T €], M)y = 8,,{cEcz) needs to be calcu-
lated self-consistently via the relation {(c}c,)=
Im [(de/2m)[GZ(€)]yo- G5 (€) is difficult to obtain since
the lesser self-energy cannot be given exactly in the
interacting regime, However, the situation simplifies in
the steady-state transport [20], in which the occupation
on the dot is time independent, i(d/dt){c}t()c, (1)) = 0.
Writing down the Heisenberg equations for ¢} () and
¢,(t) and integrating out the lead electron operators, we
find the self-consistent integral equations

(e == [EmlGuOllcordrie) + sindri(e))
(8a)

(e = [EmiGuOLlsin ri(e) + cos b (e))
(8b)

which now, together with (7), close the equations of
motion for G/.

The magnetic-field-induced excitation properties are
shown in Fig. 4 by plotting local spin-resolved spectral
densities p,(€) = [uG.(e)u’],, for different values of
w. In the absence of a rotating magnetic field (o, B; = 0),
as observed from Fig. 4(a), the spectral density for each
spin component is characterized by a broad single-
particle peak around g,4,, and a sharp Kondo peak at
Zeeman energies € = —wpy for up spin and € = wy for
down spin. The spectral weight of p; is enhanced by the
magnetic field, while p) is greatly suppressed. Therefore, a
net spin moment develops in the QD. Physically, the
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FIG. 4. The spin-up (solid state) and spin-down (dashed line)
spectral densities at different rotating frequency. Parameters
are g4 =—2.5T", ;)= —1.5I', T=0.001T', and guzB, =0.2I".
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FIG. 5. Spin current in the Kondo-type cotunneling regime
(solid line). The noninteracting spin current is also shown
(dotted line) for comparison. Other parameters are the same
as in Fig. 4.

Kondo peak at € = —wy is due to the cotunneling pro-
cesses (see inset) in which one spin-down electron in the
lead at the Fermi level tunnels into the dot and occupies
energy level &, followed by another electron on & tun-
neling out to the spin-up channel with the energy wpg
below from Fermi level Er. Such cotunneling processes
transfer electrons from spin-up channel to spin-down
channel of the lead. Thus a spin current may be induced
in an efficient way by these Kondo-type cotunneling pro-
cesses. Similarly, the Kondo peak at € = wg in p|(€) is
due to a superposition of many cotunneling processes in
which one spin-down electron with the energy wy above
the Fermi level tunnels into the dot and simultaneously
another spin-up electron in the dot tunnels out to the
Fermi level of the lead. Both kinds of cotunneling pro-
cesses contribute to the spin-current generation. When the
rotating magnetic field is switched on, the spin Kondo
resonances and spectral structures begin to change. At
o < wg, the broad single-spin and sharp Kondo peaks
shift toward higher energies for up spin, while they shift
to lower energies for down spin [Fig. 4(b)]. At two-level
resonance w = wg, as shown in Fig. 4(c): (i) each spin
Kondo singularity splits into two prominent peaks around
wp and up; (i) pi(e) and p)(e) completely overlap with
identical spectral weight. This overlap is caused by the
fact that at w = wp, each spin eigenstate in the dot is
a strong superposition of |T) and ||) states with equal
probability amplitude. When o increases further, the
two-level superposition is suppressed, and the state ex-
change occurs. As a response, the spectral densities of
two spins also exchange their structures; as can be seen
from Fig. 4(d), p,(€) is enhanced while p;(e) is greatly
suppressed.

To see the influence of the many-body correlation effect
on the spin transport, we show in Fig. 5 the spin current as
a function of rotating frequency. Compared to the non-
interacting case, it can be seen that the spin current is
greatly enhanced by the cotunneling processes in the
strong coupling, low temperature regime. A detailed
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study of cotunneling effects on the spin current is in
progress.

In summary, we have analyzed the spin-current proper-
ties of an interacting QD exposed to a rotating magnetic
field. The spin-flip process in the QD and the effective
difference of two spin chemical potentials suffices the
generation of spin current with no charge current. The
interplay of the many-body cotunneling process and co-
herent two-level resonance in the QD produces a remark-
able enhancement of spin current.
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