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Edge Effects on the Order and Freezing of a 2D Array of Block Copolymer Spheres
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The order in a single layer of spherical domains of a block copolymer melt is investigated as a
function of distance from the edges of the 15 �m wide, 30 nm deep wells that confine it along a
substrate. At 255 �C the edge induces the formation of a hexatic phase whose orientational and
translational order decreases slowly away from the edge until in the center of the well the block
copolymer spheres have liquidlike order.
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LJ. However, block copolymer spherical domains can
change size and shape in response to local stresses and
thus differ significantly from colloidal spheres, small

average lateral separation of 30 nm surrounded by a PS
corona matrix as schematically illustrated in Fig. 1. Films
slightly thinner were typically cast, resulting in wells
Ordered single layers of block copolymer domains
(e.g., cylinders and spheres) have been used recently to
produce patterned surfaces on suboptical (<100 nm)
lithographic length scales [1–4]. Such 2D ordered crys-
tals have only quasi-long-range translational order (de-
caying algebraically) [5]. Melting of such 2D arrays has
been predicted to proceed continuously by dissociation of
dislocation pairs [6,7] to form a hexatic phase [8] that
then melts by unbinding of disclinations from disloca-
tions to form a 2D liquid [Kosterlitz-Thouless-Halperin-
Nelson-Young (KTHNY) theory]. The hexatic has 2D
liquid crystalline character with only short-range trans-
lational order but quasi-long-range orientational order.
Whether KTHNY theory accurately predicts 2D melting
for specific systems is the subject of active debate [9]. In
simulations of sufficient size and defect equilibration,
there is evidence for a hexatic phase in 2D systems of
hard disks [10–13] and of particles interacting with a
Lennard-Jones (LJ) potential [14,15]. Previous experi-
ments have also found the hexatic phase in 2D systems
consisting of colloids [16–18], magnetic bubble arrays
[19], and vortex lattices in superconductors [20]. The
form of the pair potential between colloidal spheres
seems to be important in determining whether the hexatic
is seen at all and, if seen, whether the transitions to and
from this phase are first order or continuous [21]. Theory
also suggests that, if the dislocation core energy is too
low, melting via the hexatic will be preempted entirely by
grain boundary induced melting [22].

Recent experiments have revealed that the 2D melting
of an array of block copolymer spheres proceeds via a
hexatic intermediate [23]. The effective repulsive poten-
tial between block copolymer spherical nanodomains of
constant size and shape has been estimated by Semenov
to be a Gaussian at short range [24]. Near the experimen-
tal sphere spacing a the Gaussian can be approximated by
an a�10 power law, i.e., a potential somewhat softer than
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molecules, or atoms. Just as for 3D liquid crystals, the
orientational order of the hexatic, as well as its range of
stability, should be sensitive to surface fields, i.e., at the
edges of the 2D layer. To our knowledge, no previous
experiments or simulations have been carried out to ob-
serve these edge effects in hexatic systems. Our experi-
ments below demonstrate that a confining edge of an array
of block copolymer spheres induces order leading to the
formation of a hexatic phase adjacent to the edge. At a
certain temperature, we observe a continuous decrease in
translational and orientational order in the hexatic as a
function of distance from the edge until in the center of
the well both translational and orientational order are
short range.

The polystyrene-b-(2-vinyl pyridine) diblock copoly-
mer (PS-PVP) used was synthesized by anionic polymer-
ization with N � 670 and fPVP � 0:129, where N is the
total degree of polymerization of the block copolymer
and fPVP is the mole fraction of PVP mers. The chain
length polydispersity index was measured to be 1.03.
Silicon substrates were patterned with a series of 30 nm
deep, 15 �m wide, 1 mm long wells via standard elec-
tron beam evaporation of SiO2, photolithography, and
chemical etching with hydrofluoric acid [25]. A 1.5 nm
thick native oxide layer was then allowed to regrow on
all etched surfaces. When spun cast from a dilute (�1%)
toluene solution directly onto the patterned substrates, the
PS-PVP films were completely disordered. All samples
were then annealed in high vacuum (<10�6 Torr) at
temperatures between 180 and 265 �C for 72 h to allow
ordering. The samples were quenched to below the glass
transition temperature (�100 �C) to lock in the structure.
For an original spun-cast film thickness of 47 nm, this
procedure resulted in a 20 nm thick PS-PVP brush (de-
termined by secondary ion mass spectrometry) [25,26] at
the silicon oxide surface of the well covered by a single
layer of spherical PVP cores (9 nm in diameter) with an
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FIG. 1 (color). 1:5 �m square regions annealed at 255 �C for
72 h (a) near the edge of the well (step is to the left of the
image), (b) 2:75 �m from the edge, and (c) 6:75 �m from the
edge (near the middle of the well). Voronoi constructions
(top — generated from SFM micrographs) indicate that the
region in the center of the well contains many more disloca-
tions and dislocation groupings. Sixfold coordinate sites are
presented unshaded, fivefold sites are magenta, and sevenfold
sites are blue. The squared moduli of the associated Fourier
transforms with false color (shown on a linear scale where low
scattering intensities are shaded red and high intensities are
blue with an intensity difference of 1 order of magnitude from
red to blue) are presented at the bottom.
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completely filled with a single layer of spheres and a
region of brush uncovered by spheres at the edge of the
adjoining mesa [27]. The positions of the PVP cores were
revealed by etching to the midplane of the layer of spheres
using the oxygen ion gun of a dynamic secondary ion
mass spectrometer. Tapping mode scanning force micros-
copy (SFM) was used to resolve the positions of the
differentially etched PVP spheres. Etching and image
analysis details are provided in Ref. [23].

The well edges template a single grain that can extend
over the entire well width (15 �m). After 72 h of anneal-
ing at temperatures between 180 and 240 �C, the structure
of the crystal approaches equilibrium and has a very low
dislocation density (<1=�m2), long-range orientational
order, and quasi-long-range translational order [23]. At
255 �C, the hexatic phase is observed in an area adjacent
to the well edge. Figure 1 shows Voronoi constructions of
1:5 �m square areas (top row) at various locations within
the well after annealing at 255 �C. Column A is from a
strip next to the well edge (just off the image to the left),
while the centers of the images in columns B and C are
2.75 and 6:75 �m away from the edge, respectively. These
Voronoi constructions were generated from SFM micro-
graphs of identical size and highlight topological defects
by revealing spheres with fivefold (5’s) and sevenfold (7’s)
coordination [28]. False color Fourier transforms gener-
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ated from the pattern of sphere centers are shown in the
bottom row of images.

In all three locations, theVoronoi constructions reveal a
finite density of free dislocations (5-7 pairs) and disloca-
tion groupings, and the digital Fourier transform demon-
strates the azimuthal smearing of the first order Bragg
peaks characteristic of the hexatic phase. The free dis-
location density increases as the distance from the edge
increases (moving to the right across Fig. 1) and the first
order Bragg peaks become increasingly smeared. In
column C (6:75 �m from the edge), two disclinations,
one 5 and one 7, are visible. These free disclinations
indicate that a dislocation to disclination unbinding
transition which, in theory, characterizes the melting of
the hexatic to the liquid state has occurred at some
smaller distance to the edge, i.e., between 2.75 and
6:75 �m, but the Fourier transform indicates that this
2D array still has sixfold symmetry. This lack of isotropy
over a small area of the 2D liquid may result from the
large orientational correlation length near the disclina-
tion unbinding transition.

To further quantify the 2D order as a function of
distance from the edge, we compute the translational
and orientational correlation functions. The translational
correlation function, GT�r�, is

GT�r� � hei ~KK ~rr0e�	i ~KK�~rr0�~rr�
i; (1)

where ~KK is a reciprocal lattice vector to one of the first
order peaks in the 2D Fourier transform and the brackets
indicate an average over all spheres separated by ~rr and an
average over all six reciprocal lattice vectors. The orienta-
tional order correlation function is G6�r� � h �

6�0� 6�r�i,
where

 6�ri� �

P
NN
j�1 exp�6i��rij��

NN
(2)

and  �
6�0� is the complex conjugate of the order parameter

of the sphere, with NN nearest neighbors, which is des-
ignated as the origin. Each sphere is used as the origin for
one calculation and the angular brackets indicate an
average over all spheres. The correlation functions are
shown as a function of distance from the wall for the
sample annealed at 255 �C in Fig. 2. The translational
order is short range in all of these cases and is fit with
an exponential of the form, GT�r� / exp��r=�T�, where
�T is the translational correlation length that decreases
with distance from the edge. The orientational order is
quasi-long-range and the correlation function is well fit
with an algebraic function of the form G6�r� / r

��6 . The
combination of short-range translational order and quasi-
long-range orientational order is characteristic of hexatic
order, while translational and orientational short-range
order is characteristic of a liquid. The translational cor-
relation length, �T , decreases with distance x away from
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FIG. 3. (a) Dependence of the translational correlation length
�T on distance x from the well edge at 255 �C. (b) Dependence
of the orientational correlation exponent, �6, on distance from
the well edge at 255 �C. The Halperin and Nelson prediction for
the disclination unbinding transition is drawn as a horizontal
line at �6 � 0:25. Each value of �T (or �6) is calculated from
GT�r� [or G6�r�] determined from five 1:5 �m square regions
centered at x from the edge.

FIG. 2. Translational correlation functions, (a) semi-log plot
of GT�r� (�) and (b) log-log plot of G6�r� (solid line), for a
sample annealed at 255 �C for 72 h. Each panel is an average
over spheres in a 1:5 �m square region. Panel (1) is located
adjacent to the well edge. The second panel (2) is centered
2:75 �m away from the edge, (3) is centered 4:75 �m from the
edge, and (4) is centered 6:75 �m from the edge. GT�r� is fit
with exp��r=�T�, where a is the average sphere spacing for
panels 1–4, respectively. G6�r� is fit with r��6 (dotted line) for
panels 1–4.
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the edge as shown in Fig. 3(a) while the exponent, �6,
increases with x as shown in Fig. 3(b). For a 2D system of
infinite extent Halperin and Nelson [8] predict that �6 �
0:25 at the disclination unbinding transition, a value met
when x � 4:75 �m. At a distance of 6:75 �m, the
Halperin and Nelson prediction for the disclination un-
binding transition has been exceeded and the decay of
G6�r� is now slightly better fit by an exponential (corre-
lation length �6 � 28a, where a is the distance between
spheres) indicating that the orientational order is now
short ranged. The translational order is extremely short
ranged (�T � 2a) and characteristic of a liquid.

All this evidence suggests that the center of our well
is a liquid but that the presence of the edge results in
an ‘‘edge freezing’’ of a hexatic layer, in analogy to the
well known surface melting or freezing of 3D crystals
[29]. As in the 3D case we imagine that the formation of
this layer is driven by an edge excess free energy ��� �
�el � �eh � �hl, where �el, �eh, and �hl are free energies
of the edge-liquid (el), edge-hexatic (eh), and hexatic-
liquid (hl) interfaces, respectively. Since �hl � 0 if the
transition from hexatic to liquid is 2nd order as predicted
by Halperin and Nelson, and since it seems very plausible
that the free energy of a block copolymer liquid-edge is
greater than that of a block copolymer hexatic-edge, a
positive value of ��� favoring edge freezing of a hexatic
layer seems likely. Also of interest is the long length scale
over which the transition from the hexatic structure in-
duced by the edge to the ‘‘bulk’’ 2D liquid takes place.
The solid line in Fig. 3(a), which has been fit to the data,
describes an exponential decay of the translational corre-
lation length �T to its value (a) in the 2D liquid, i.e.,

�T�x�=a � 1� A exp��x=��; (3)
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where A is a constant (�13:3) and � is a decay length
(�2:5 �m or 83a). The increase in �6 to its value in the
liquid takes place over a similarly long length scale.

At 250 �C the block copolymer array is a 2D solid
(long-range orientational order) near the edge but in the
center of the well the orientational order is quasi-long-
range (�6 � 0:08) [30]. At 264 �C the orientational order
is short range, both at the edge and in the center of the
well, but the orientational correlation length is larger (6a)
near the wall than in the center (a). The latter result
indicates that the edge also exerts an ordering influence
on the liquid even when the temperature is not low enough
that the region near the edge freezes to the hexatic.

In summary, we find that the presence of a confining
edge on a 2D array of block copolymer spheres imparts
both translational and orientational order, and this effect
dies away continuously as the distance from the confining
edge is increased. As a result, at 255 �C a hexatic region
forms near the edge even though the region far from the
edge is liquid.
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