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Nonexponential Dissipation in a Lossy Elastodynamic Billiard:
Comparison with Porter-Thomas and Random Matrix Predictions
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We study the dissipation of diffuse ultrasonic energy in a reverberant body coupled to a waveguide,
an analog for a mesoscopic electron in a quantum dot. A simple model predicts a Porter-Thomas
distribution of level widths and corresponding nonexponential dissipation, a behavior largely confirmed
by measurements. For the case of fully open channels, however, measurements deviate from this model
to a statistically significant degree. A random matrix supersymmetric calculation is found to accurately
model the observed behaviors at all coupling strengths.
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an adequate job of fitting observed decay profiles. In the FIG. 1. A diffuse wave field radiates into a waveguide.
A random matrix model of wave scattering from
an ideal lead, off a chaotic region, has been employed
in nuclear theory for decades [1–6]. It originated in
the theory of nuclear reactions and is widely used in
the analysis of compound nuclei, mesoscopic quantum
dots, and microwave cavities [1–6]. It has provided a
model of intrinsic loss mechanisms in classical wave
chaotic systems, with implications for microwave cavities
and reverberant ultrasonics. In particular, it has shown
that dissipation is not necessarily exponential in time,
and made specific predictions for how that decay should
behave.

A simple argument that relates such behavior to the
distribution of resonance widths leads to a nonexponential
decay law under the assumption of a Porter-Thomas (chi-
square) width distribution [6,7]. That distribution follows
from first order perturbation theory on a system with
Gaussian mode shape statistics and a finite number of
loss channels. A more general argument may be con-
structed by the information-theoretic approach [2] or
the random Hamiltonian approach [4,5]. These also pre-
dict nonexponential decay and corresponding delay time
distributions, but with different details [4,6,8]. Acoustic
[7] and microwave [9] measurements have confirmed
nonexponential decays. Critical comparisons with the
models have not been undertaken.

In this Letter, we address diffuse energy decay in an
open acoustical system. While nonexponential decays
have long been observed, and modeled by means of
Porter-Thomas distributions of resonance widths, devia-
tions from those predictions have not yet been detected.
Indeed, it has not yet been clear whether measurements
can distinguish between the predictions of the simple
argument and those of random matrix theory (RMT)
[3–9]. It is therefore interesting to compare both the
RMT predictions [5] and the simple argument predictions
[7] with measurements conducted on an experimental
realization of a chaotic billiard attached to a waveguide.
In most cases, we find that a Porter-Thomas model does
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case of strongly coupled channels, however, a full RMT
prediction is superior. The difference is small, but statis-
tically significant.

Consider a reverberant body as in Fig. 1 coupled to a
waveguide. The body has mean diffuse energy density
(per mode) of ". The total energy in a band of width �!
is "D�!, where the body’s modal density D � @Nbody=
@!. An attached waveguide has mean energy per out-
going mode no greater than ". Incoming modes have no
energy. Each guided mode (i.e., each channel) therefore
carries power at a rate no greater than �d�!��"=2�vg,
where d is the lineal modal density per length in the
channel, d � @Nchannel=@!@L � 1=�vg and vg is the
group velocity of that mode. The factor (1=2) is due to
neglect of the incoming modes. Thus, each channel con-
ducts outgoing power � � �1=2��"�!, independent of
dispersion in the channel. At maximal coupling, each
channel contributes the same mean partial width, an
energy decay rate of �="D�! � 1=�2�@NBody=@!� �
1=tHeisenberg. This picture does not apply to individual
normal modes of the body, but only to the mean. Those
normal modes of the body which overlap well with the
waveguide will dissipate rapidly; those which overlap
poorly will do so slowly. While the average level width
(and early time decay rate) may well correspond with the
above estimate, the less strongly dissipated modes will
eventually dominate a transient decaying field; the appar-
ent dissipation rate will appear to diminish.

Modeling the diffuse field as a superposition of inde-
pendent real normal modes with Gaussian statistics (this
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is not correct, lossy systems generically have complex
eigenmodes), each with a proper decay rate given by first
order perturbation theory, leads to a chi-square-like dis-
tribution of modal decay rates, and a net transient energy
decay,

E�t� � E0

YM
i�1

�1 � 2�it�	1=2; (1)

where M is the number of open outgoing channels, and �i
is the decay rate through the ith channel, �i � 1=tH. In
certain limits, it reduces to E�t� 
 E0 exp�	

P
i�it�.

In the special case of equipotent channels, �i � �=M,
one recovers the simplest Porter-Thomas model [7],

E�t� � E0�1 � 2�t=M�	M=2: (2)

This form for the dissipation of ultrasonic energy
density has been confirmed phenomenologically by tak-
ing E0, M, and � to be adjustable parameters. Observed
profiles E�t� have been found to fit remarkably well [7]. A
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FIG. 2. A comparison of the predictions of the Porter-
Thomas model [dashed line, Eq. (1)] for transient decay with
that of a full supersymmetric calculation [solid line, Eq. (3)].

194101-2
particularly noteworthy case is that of [9] in which the
case of three weakly coupled (�i � 1=tH) channels was
successfully fit to Eq. (1). In many of these fits, it has not
been clear whether the recovered parameter M is mean-
ingful, i.e., whether it does indeed correspond to a dis-
crete number of equipotent effective loss channels.

A better theory, beyond first order perturbation, is
provided by considering a random matrix model [3,4]
for which level width distributions are known to be non-
chi-square [4]. Here the dynamics is governed by a
Gaussian orthogonal ensemble random Hamiltonian,
consistent with the assumed chaotic ray trajectories of
the body, plus an anti-Hermitian part corresponding to a
discrete number M of outgoing channels. Supersymmetric
techniques [4,5] allow construction of various averages.
Among the more easily constructed is E�t� � jGij�t�j

2,
the mean square response at a site j distinct from the site i
of the source, each distinct from any dissipative sites.
Gij�t� is the time-domain Green’s function. On inverse
Fourier transforming the result of a supersymmetric cal-
culation [5], one finds
E��� 
Z 1

1

Z 1

1
d�1 d�2 ���; �1; �2�f��; �1; �2�

���1�2 	 2�� 1���2�	 �1�2 � 1��1 	 �2�� �1�2�
2�

��2
1 � �2

2 � �2�� �1�2�
2 	 2�1�2�2�� �1�2� 	 1�2

; (3)
where � � t=tH and M is the number of channels, each
characterized by a coupling parameter gi � 1, f � ��2

1 	
1��2

2 � ��2
2 	 1��2

1 � 1 	 �2�� �1�2�
2, � �

Q
M
i�1�gi �

2�� �1�2��g2
i � 2gi�1�2 � �2

1 � �2
2 	 1�	1=2. For a

large number of weak (gi � 1) channels, this reduces to
E�t� � E0 exp�	 �

P
2=�gi � 1��, in agreement with the

naive model. At finite M the two models differ slightly. A
comparison at M � 4, gi � 1:5, �i � 2=�gi � 1�tH �
4=5tH, for all i, is shown in Fig. 2. The naive model
overestimates curvature.

We study the aluminum body (volume 561 cm3, free
surface 451 cm2) pictured in Fig. 3. Nonparallel faces and
defocusing surfaces enhance ray chaos. After preliminary
baseline measurements, it was welded to an aluminum
wire (1100 alloy, 3.18 mm diameter, 3 m length). Tests
were carried out with the spiral part submerged in a water
bath. Attenuation in the water assures negligible reflected
energy and thus the presence of only outgoing waves. This
was confirmed by separate measurements. The guided
elastic waves of a circular waveguide are described by
the Pochhammer dispersion relation [10]. All modes with
azimuthal number n > 0 are twofold degenerate. At low
frequency, below the first cutoff at 580 kHz, there are
M � 4 propagating guided waves. Two are flexural
(n � 1), one is extensional (n � 0), and one torsional
(n � 0). A calculation of cutoff frequencies gives the
number of open channels. The strength with which these
channels are coupled is not known a priori. Measurement
of reflections of waves incident from the wire onto the
block indicate that the coupling is good; reflections are
generally weak. Dispersion and the possibility of
mode conversion complicate any attempt to be more
quantitative.

Profiles E�t� were constructed both before and after the
waveguide was attached. For each case, piezoelectric
FIG. 3. Sketch of measurement system.
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FIG. 4. The natural logarithm of mean energy E�t� averaged
over 16 distinct positions of source and receiver in a band
between 225 to 275 kHz. The Heisenberg time is 34 ms.
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FIG. 6. M values as recovered from fits to the difference
lnE�t� in each of several narrow frequency bands are compared
to expectations based on the cutoff frequencies of the
Pochhammer dispersion relation.
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pulses of negligible duration were applied to pin trans-
ducers in light oil contact with the body, as in Fig. 3.
Waveforms of durations of up to 100 ms and bandwidths
to 2 MHz were recorded at a digitization rate of
5 MSamples=s. A low pass filter with a cutoff of
2.25 MHz prevented aliasing. Repetition averaging im-
proved signal to noise ratios and extended the system’s
dynamic range. The resulting waveforms were time win-
dowed into 62 successive 1.64 ms sections with tapered
edges. Each windowed waveform was Fourier trans-
formed and squared and integrated over rectangular
bins of width 25 or 50 kHz. The result was an array
of spectral energy densities versus time for each of
several narrow frequency bands. On repeating this for
16 distinct source and receiver positions an average E�t�
was constructed for each band. A typical profile is seen in
Fig. 4. As expected, the waveguide has augmented the
decay rate.

The upper curve is the reference case without the
waveguide; it shows a decay which is very nearly expo-
nential, i.e., consistent with intrinsic decay mechanisms
being widely distributed and corresponding to a large
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FIG. 5. Decay rates � as recovered from a fit of the differ-
ence lnE�t� to Eq. (2) in each of several narrow frequency
bands (data points) are compared to the prediction: � �
MPochhammer=tH (solid line).

194101-3
number of weakly coupled dissipative channels. As in
[7], the behavior fits well to Eq. (2); chi-squares are
excellent. While the parameter M extracted from that fit
is perhaps not meaningful, we do take Eq. (2) as a valid
way to smooth the reference data. The smoothed reference
lnE�t� is then subtracted from the measured lnE�t� in the
waveguide-attached case to give a difference lnE, what
we would have measured in the attached case if our
reference block had been nondissipative. This profile
shows substantial curvature, consistent with a hypothesis
of a small number of outgoing channels.

The observed differences lnE were then themselves fit
to Eq. (2). Figures 5 and 6 show the parameters � and
M extracted from those fits, and compares them
with expectations based on assuming perfect coupling:
MPochhammer � number of propagating modes; � �
MPochhammer=tH. That the � of the difference lnE is not
in excess of this theory, even at high frequencies, is an
indication that the welding process has not significantly
increased intrinsic absorption. The correspondence is
remarkably good for such a simple theory; M and �
show the predicted features, in particular, those associ-
ated with the onsets of new guided modes at 580, 800,
and 1000 kHz. At low frequencies, the correspondence
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FIG. 7. Values for tH
P

�i (dashed line) and for
P

2=�1 � gi�
(solid line) from fits of Eqs. (1) and (3) to the difference lnE�t�
profiles. The chi-squares of the fits indicate the inability of
Eq. (1) to fit the data in those places where coupling is strong.
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FIG. 8. Fits of the supersymmetric profile [Eq. (3)] (smooth
solid lines) and the Porter-Thomas model [Eq. (1)] (dashed
lines) to the difference lnE�t� (irregular solid lines) in repre-
sentative frequency bins. At 150 kHz, each model fits well:
Eq. (1) calls for �i � f1; 1; 0:07686; 0:07686g=tH (the flexural
modes are especially weakly coupled at such long wavelength,
hence their small �.) Eq. (3) calls for 2=�1 � gi� �
f0:5954; 1; 0:0614; 0:0614g. At 475 kHz, the fits call for �i �
1=tH and 2=�1 � gi� � 0:9 for all i.
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is poor; the model assumption of perfect coupling is
incorrect.

The reduced chi-squares of these fits are shown in the
inset. At high frequencies they are within 1 standard
deviation of the expected value of unity. Plots of the
residuals show that fluctuations are not systematic. We
conclude that the higher-frequency data is consistent
with Eq. (2); small curvatures are well modeled by a
single phenomenological parameter Meffective; the high
frequency data does not permit conclusions in regard to
the relative virtues of the various theories. At low fre-
quency, the chi-squares exceed unity. This is in part due to
the inadequacy of our spatial averaging there; different
transducer positions are often within a wavelength and
are correlated. It is in part also due to some systematic
deviations that indicate a need for a better theory; un-
physical values of M (Fig. 6) are a further indication of
that need.

At low frequencies (<580 kHz), where there are only
four open channels, we attempt a fit to the richer theories
(1) and (3) by fixing M at four and adjusting the coupling
strengths.We take the two flexural waves to have identical
coupling (the weld is axisymmetric); set g3 � g4, �3 �
�4, and adjust only E0 and three values of gi � 1 (or �i �
1=tH). The fits’ values for total loss coefficient [tH

P
�i �

4 and
P

2=�1 � gi� � 4] are shown in Fig. 7.
Representative plots of the data and fits are shown in
Fig. 8. In cases with weak coupling, both models do
well. At higher frequencies where coupling is efficient
(all gs close to unity), and first order perturbation theory
is invalid, there are significant discrepancies. At several
194101-4
of the frequencies only the full RMT calculation Eq. (3) is
statistically acceptable. At a few other frequencies where
Eq. (1) gives an acceptably low chi-square, its call for all
four channels to be perfectly coupled, �i � 1=tH, is im-
plausible. The fits at these several frequencies may be the
first demonstration of non–Porter-Thomas–like level
width distributions; it is also evidence for the superior
applicability of a full RMT calculation over that of sim-
pler theories. This has implications for RMT and wave
chaos, for mesoscopics, nuclear physics, microwave
physics, diffuse field ultrasonics, and also for structural
acoustics where modeling of losses, both intrinsic and
radiative [11,12], is gathering increased attention.

This work was supported by NSF Grant No. CMS-
0201346.
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