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We present a calculation of the B’-B® mixing matrix element in the framework of QCD sum rules for
three-point functions. We compute « corrections to a three-point function at the three-loop level in
QCD perturbation theory, which allows one to extract the matrix element with next-to-leading order
(NLO) accuracy. This calculation is imperative for a consistent evaluation of experimentally measured
mixing parameters since the coefficient functions of the effective Hamiltonian for B’-B° mixing are
known at NLO. We find that radiative corrections violate factorization at NLO; this violation is under
full control and amounts to 10%. The resulting value of the B parameter is found to be Bg(m;,) =

1 + O'lPT - O.OSnon_PT.
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The phenomenon of particle-antiparticle mixing,
possible in systems of neutral mesons of different flavors,
is the primary source of studies of CP violation (for
a review, see, e.g., [1]). According to the Cabibbo-
Kobayashi-Maskawa (CKM) picture, quarks of all three
generations must be present in a transition for CP viola-
tion to occur. Historically, studies of K°-K° mixing pro-
vided first essential insights into the physics of heavy
particles as well as tests of general concepts of quantum
field theory. For a long time it was the only place where
the effects of CP violation were clearly established (see,
e.g., [2]). Since weak couplings of s and d quarks to third
generation quarks are small, experimental studies of CP
violation in heavy mesons are considered more promis-
ing. While recent experimental results for heavy charmed
mesons D(iic) are encouraging, a full consistent theoreti-
cal description of this system is still lacking [3].
These considerations make the systems of B,(db) and
B,(5b) mesons the most promising laboratory for a pre-
cision analysis of CP violation and mixing both experi-
mentally and theoretically [4]. Hereafter we shall
consider B, mesons. The generalization to B, mesons is
straightforward.

Phenomenologically the system of the B’-B° mesons is
described by the effective mass operator (M — il'/2);;,
{i, j} = {1, 2} which in the presence of AB = 2 interac-
tions acquires nondiagonal terms. The difference between
the values of the mass eigenstates of B mesons Am =
Myeavy — Miyigne = 2|M 5| is an important observable
which is precisely measured to be Am = 0.489 =
0.005(stat) = 0.007(syst) ps~! [5]. With an adequate theo-
retical description, it can be used to extract top quark
CKM parameters.

In the standard model, the effective low-energy
Hamiltonian describing AB = 2 transitions has been
computed at next-to-leading order (NLO) in QCD per-
turbation theory (PT) [6]
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where ng = 0.55 £ 0.1 [7], J5 = 1.627 in the naive di-
mensional regularization scheme, Sy(x,) is the Inami-
Lim function [8], and O(u) = (b, y,d.)(b;y,d;)(w) is
a local four-quark operator at the normalization point w.
Note that the part of Eq. (1) in the second line is renor-
malization group (RG) invariant. Mass splitting of heavy
and light mass eigenstates can then be found to be

Am = 2|(B°|H5E=2|BY)|
5
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where C = G2M5,(V};, V,1)*ngmpSo(x,)/(47?). The larg-
est uncertainty of about 30% in the theoretical calculation
is introduced by the poorly known hadronic matrix ele-
ment A = (B°|O(u)|B°) [5]. The evaluation of this ma-
trix element is a genuine nonperturbative task, which can
be approached with several different techniques. The
simplest approach (‘‘factorization) [9] reduces the ma-
trix element A to the product of matrix elements mea-
sured in leptonic B decays A/ = (8/3) (B|b, y,d, |0) X
Olb,y7d, |B® = (2/3)f2m%, where the decay constant
[ is defined by (0|6, y,d.|B(p)) = ip,fp/2. A devia-
tion from the factorization ansatz is usually described by
the parameter By defined as A = Bz A/; in factoriza-
tion By = 1. There are many approaches to evaluate this
parameter (and the analogous parameter By of K°-K°
mixing) available in the literature [10—-17].

The calculation of the hadronic mixing matrix ele-
ments using operator product expansion (OPE) and QCD
sum rule techniques for three-point functions [11-13] is
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very close in spirit to lattice computations [16], which is a
model-independent, first-principles method. In the QCD
sum rule approach one relies on asymptotic expansions of
a Green’s function while on the lattice the function itself
can be computed in principle. The sum rule techniques
also provide a consistent way of taking into account
perturbative corrections to matrix elements which is
needed to restore the RG invariance of physical observ-
ables usually violated in the factorization approximation
[18]. The calculation of perturbative corrections to B°-B°
mixing using OPE and sum rule techniques is the main
subject of this paper. A concrete realization of the sum
rule method applied here consists of the calculation of the
moments of the three-point correlation function of the
interpolating operators of the B meson and the local
operator O(u) responsible for B’-B transitions.
Let us consider the three-point correlation function

H(py, pa) = fdxdy(OITJg(x)(O(O)JB(y)|o>eiﬂzx—imy.

The operator Jz = (m,, + m,)diysb is chosen as interpo-
lating current for the B® meson and m, is the b quark
mass. Note that Jp is RG invariant, Jz = 9,(dy,vsb)
and (0|J5(0)|B°(p)) = fzm% where my is the B-meson
mass. A dispersive representation of the correlator reads

p(sy, 52, ¢*)ds,ds,
(py, po) = (pi, p3. ¢%) = ,
b b (s1 — pD(sy — p3

3)

where ¢ = p, — p;. For the analysis of B’-B° mixing this
correlator needs to be computed at ¢ = 0, while within
the sum rule framework ¢*> = 0. This particular kine-
matical point is infrared safe for massive quarks. The
matrix element (B°|O(w)|B°) appears in the three-point
correlator as a contribution of the B mesons in the form of
a double pole

(J51BY) - (B°|Jp)
B~ DI mpg — p3

“4)

where the ellipsis stand for higher resonances and con-
tinuum contributions. The matrix element can be extrac-
ted by comparing the representations given in Eq. (4) and
the (smeared) theoretical expression of Eq. (3) obtained
with an asymptotic expansion based on OPE. Note that
the analytical calculation of the spectral density itself at
NLO of PT expansion is beyond present computational
techniques. Therefore, a practical way of extracting the
B°-B° matrix element is to analyze the moments of the
correlation function at p? = p3 = 0 at the point ¢g> = 0.
One obtains

MG ) = dHITI(p?, p%,'O) _ fp(sl, 59, O)dsldsz
itjlop}apy sitls)!
192002-2

FIG. 1. Perturbation theory diagram at LO.

A theoretical computation of these moments reduces to an
evaluation of single scale vacuum diagrams (we neglect
the light quark masses). This calculation can be done
analytically with available tools for the automatic com-
putation of multiloop diagrams.

The leading contribution to the asymptotic expansion
is given by the diagram shown in Fig. 1. At leading order
(LO) in QCD perturbation theory the three-point func-
tion of Eg. (2) completely factorizes Il(p;, p,) =
(8/3)I1,(p)I1#(p,), where 11, (p) is the two-point cor-
relator

M,(p) = pJ1(p?) — f dxeP(O|T T 5(x)B,y o, (0)[0).
(5)

The calculation of moments is straightforward since the
double spectral density p(s;, s,, g>) can be explicitly
found. Using a dispersive representation of I1(p?)

o d 3 2\2
gt = [77 (_s)p;‘, o) = joan’(1-"2), ©

one finds the LO double spectral density pO(s;, 5,, ¢*) =
(8/3)(p1 - p2)p(s))p(sa) = (4/3)(s; + 52 — ¢*)p(sy) X
p(s,). The first nonfactorizable contributions to Eq. (3)
appear at NLO. Nevertheless, the factorizable diagrams
form an important subset of all contributions, as they are
independently gauge and RG invariant. Thus, a classifi-
cation of diagrams in terms of their factorizability is a
very powerful technique in the quantitative analysis.

The NLO factorizable contributions are given by the
product of two-point correlation functions from Eq. (5),
as shown in Fig. 2. Writing II(p?) = I o(p?) +
Txo(p?) we obtain TI{; o(py, pa) = (8/3)(p; - pa) X
[Mo(pDnLo(p3) + Myio(pDIILo(p3)]. The spectral
density of the correlator ITy; o(p?) is known analytically.
This completely solves the problem of the NLO analysis
in factorization. Note that even a next-to-next-to-leading
order analysis of factorizable diagrams is possible as
several moments of two-point correlators are known an-
alytically. Others can be obtained numerically from the
approximate spectral density [19].

FIG. 2. Factorizable diagrams at NLO.
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The NLO analysis of nonfactorizable contributions
within perturbation theory is the main result of this
paper. This analysis amounts to the calculation of a set
of three-loop diagrams (a typical diagram is presented in
Fig. 3). These diagrams can be computed using the
package MATAD for automatic calculation of Feynman
diagrams [20]. Before applying this package, the combi-
natorics of disentangling the tensorial structures has to be
solved and all the diagrams have to be reduced to a set of
scalar integrals which can be done using the results of
Ref. [21]. The steps described above were automated with
the computer algebra system FORM [22]. We shall present
the details of this calculation elsewhere.

The local four-quark operator O entering the effective
Hamiltonian has to be renormalized. We employ naive
dimensional regularization. The renormalization of the
operator O reads

or—0s-%1o. %)
4re
with O, = (b_LFWat”dL)(ELF“”“I"dL). The t° are the
SU.(3) generators and I'y,q = (Yo ¥ ¥a = Ya Vo ¥u)/2-
The renormalization of the factorizable contributions
reduces to that of the b-quark mass m. We use the quark
pole mass as a mass parameter of the calculation.
The expression for the “theoretical” moments reads

6

&(1 o]+ bl )), 8)

Moo ) = 2

where the quantities a;;, b,f], and b nf represent LO, NLO
factorizable, and NLO nonfactonzable contributions as
shown i 1n Figs. 1-3. The NLO nonfactorizable contribu-
tions b with i + j = 7 are analytically calculated in
this paper for the first time. The calculation required
about 24 h of computing time on a dual-CPU 2 GHz
Intel Xeon machine. The calculation of higher moments
is feasible but requires considerable optimization of the
code. This work is in progress and will be presented
elsewhere. As an example, we give the analytical results
for the lowest finite moment M, (2, 2):

1 /8 40 1672
- (2} =240
92 7 (2 <3> 2" 3" ©)
b= s 8366187 84608  ,33197 426319
2717500 37875 7 52500 315000

Here S2 (4/9/3)Cly(7/3) = 0.2604, &3 = £(3), and
w? = m?. For higher moments we present only numerical

6000w,

FIG. 3. An example of a nonfactorizable diagram at NLO.
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values for b bg(fz345 ={0.68,1.22, 1.44, 1.56} and

b3(g4 = {1.96, 2 25} The nonperturbative contribution
due to the gluon condensate is small. For the standard
numerical value (g2G?) = 0.5 GeV* [23], the nonfactor-
izable contribution due to the gluon condensate is about
3% of the perturbative contribution for the high moment
M (3, 3). For lower moments it is even smaller and, there-
fore, can be safely neglected in the whole analysis.

We use the above theoretical results to analyze sum
rules and extract the nonperturbative parameter Bp.

The “phenomenological” side of the sum rules is given
by the moments which can be inferred from Eq. (4),
8 fimp
M, j) = 3B (10)
where the contribution of the B meson is displayed ex-
plicitly. The remaining parts are the contributions due to
higher resonances and the continuum which are sup-
pressed due to the mass gap A in the spectrum model.

For comparison we consider the factorizable approxi-
mation for both theoretical

mb

aij As o f
2(,+,)<1 +Eb’7> (11
and phenomenological moments, which, by construction,
are built from the moments of the two-point function of

Eq. (5)

th(l ])

8 meB
2(z+1) + e (12)
mg

(t D=

According to the standard QCD sum rule technique, the
theoretical calculation is dual to the phenomenological
one. Thus, Eq. (10) should be equivalent (in the sum rule
sense) to Eq. (8). Also, in factorization, Eq. (12) is
equivalent to Eq. (11). Now Egs. (8) and (11) differ only
due to nonfactorizable corrections. Therefore, the differ-
ence between Eqgs. (10) and (12) is because the residues
differ from their factorized values.

To find the nonfactorizable addition to By from the sum
rules we form ratios of the total and factorizable contri-
butions. On the theoretical side one finds

MG, j) 41+ 2 pl’
This ratio is mass independent. On the phenomenological
side we have

(13)

Mph(ir .])

_ BB + RB(ZJ + Zl) + CBZi+j
M (i, j)

1+ RI(Z + )+ Tl

;o (14

where z = m%/(m% + A) is a parameter that describes the
suppression of higher state contributions. A is a gap
between the squared masses of the B meson and higher
states. Rg, Cg, RY, and C’ are parameters of the model for
higher state contributions within the sum rule approach.
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In order to extract the nonfactorizable contribution to By
we write By = 1 + AB. Similarly, one can parametrize
contributions to phenomenological moments due to
higher B-meson states by writing Rz = R/ + AR and
Cp = Cf + AC. Clearly, AB= AR = AC = 0 in facto-
rization. We obtain

Mph(i’ ./) N
MG, j)

AB + AR(Z/ + ') + ACZ'tI
1+ R+ ) + Cf it

5)

Comparing Egs. (13) and (15) one sees how the pertur-
bative nonfactorizable correction bl'-'f is ““distributed”
among the phenomenological parameters of the spec-
trum. We extract AB by a combined fit of several theo-
retical and phenomenological moments. The final formula
for the determination of AB reads

Ds prf — AB + AR(Z12 + 7i2) + ACZi*i™4, (16)
4a Y

where AR and AC are free parameters of the fit. Nu-
merically we take A = 0.4m% from the QCD sum rule
analysis of the spectrum of two-point correlators for B
mesons within heavy quark effective theory. We then
perform a least-squares fit to determine AB. Using all
available theoretical moments we find (AB, AR, AC) =
a,(m)/(4m)(7.1, —5.0,3.6). We checked the stability of
the sum rules which lead to a prediction of AB. It can be
illustrated in the following way. The contribution of
higher B states is suppressed more strongly for higher
moments and therefore decreases with increasing order of
a moment, while the perturbative correction grows. The
sum of both is (approximately) the same for all moments,
which leads to a (almost) constant value for AB, inde-
pendent of the particular moment. The calculation can be
further improved with the evaluation of higher moments.
The result is sensitive to the parameter z or to the magni-
tude of the mass gap A used in the parametrization of the
spectrum. Estimating all uncertainties we finally find the
NLO nonfactorizable QCD corrections to AB due to
perturbative contributions to the sum rules to be AB =
(6 = Da,(m)/(47). For m =48 GeV, a,(m)=0.2
[5,24], it leads to AB = 0.095 = 0.1. It is known that
nonperturbative corrections (such as the ones due to the
quark-gluon condensate) to the parameter By are nega-
tive, AB""PT(m) = —0.05 [12]. Combining this result
with the present analysis we find Bg(m) = 1 + 0.1pyp —
0.05,n-pr showing the excellent numerical validity of the
factorization approximation at the scale u = m. This
leads to the following prediction for the renormaliza-
tion-group invariant B parameter B = [ ()]7¢/23[1 +
Jsa® (w)/(4m)]B(n) = 1.60 + 0.03.

In conclusion, we have evaluated the B°-B° mixing
matrix element in the framework of QCD sum rules for
three-point functions at NLO in perturbative QCD. The
effect of radiative corrections on Bg is under complete
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control and amounts to approximately +10%. We have
also shown that perturbative QCD correction to AB for
the moments considered in our analysis completely domi-
nates the correction due to the gluon condensate.
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