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Monopole Core Instability and Alice Rings in Spinor Bose-Einstein Condensates
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We show how the length scale hierarchy, resulting from different interaction strengths in an optically
trapped spin-1 23Na Bose-Einstein condensate, can lead to intriguing core deformations in singular
topological defects. In particular, a point defect can be unstable with respect to the formation of a stable
half-quantum vortex ring (an ‘‘Alice ring’’), providing a realistic scheme to use dissipation as a
sophisticated state engineering tool. We compute the threshold for stability of the point monopole,
which is beyond the current experimental regime.
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FIG. 1 (color online). The stable half-quantum vortex ring
(Alice ring), when the energy of an initial spherically sym-
metric monopole was minimized by continuously deforming
the field configuration. The asymptotic distribution of the spin
quantization axis d�r� (left), for r� �a, forms the radial
hedgehog. For visualization purposes, the unoriented d�r� field
is drawn by cones. We show the constant surface density plots
(right) for j 1�r�j2 (red or light grey) and for j �1�r�j2 (blue or
ments and elementary particle physics. It also shows that
dissipation, often an obstacle in state engineering, can

dark grey), where the monopole core is deformed for r & �a
with the two line vortices separating.
The rich order parameter space of multicomponent
Bose-Einstein condensates (BECs) can admit truly 3D
topological excitations [1–3], beyond the simple quan-
tized vortices of single-component BECs. Such structures
are of interest in a wide range of physical contexts, but
dilute atomic BECs offer the unusual advantage that we
can fully investigate, e.g., the short-range physics in
topological defect cores, where the order parameter may
explore a larger space than the usual ground state mani-
fold. In this Letter we show how this can result in rich and
surprising core structures, by demonstrating a spontane-
ous deformation of a singular point defect to an energeti-
cally stable half-quantum vortex ring. We evaluate the
stable configurations for the parameters of current BEC
experiments [4] and show how the half-quantum vortex
ring could be prepared and easily observed using experi-
mentally feasible techniques. We also present the ener-
getic arguments behind the core deformations which
apply to general multicomponent BECs.

We examine the recently presented case [3] of a defect
analogous to the ’t Hooft-Polyakov monopole [5], in an
antiferromagnetic, or polar, spin-1 BEC [4]. We will show
that it is only in the strongly antiferromagnetic regime,
which is not attained in current experiments, that its
stable core will be the spherically symmetric hedgehog,
with a vanishing density, of Ref. [3]. In the weakly anti-
ferromagnetic regime that currently holds, the wave-
length at which the antiferromagnetic constraint may be
violated is much larger than that at which the total
density constraint fails. The stable defect core therefore
extends to this larger size, and holds nonzero average spin
instead of a density zero. The singular point defect itself
deforms to a circle: a half-quantum vortex ring (Figs. 1
and 2), called an Alice ring by high energy physicists
[6–8], which carries a topological charge similar to
delocalized magnetic ‘‘Cheshire’’ charge [9]. This forms
an interesting connection between ultracold atom experi-
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sometimes perform the intricate final step in producing an
exotic object.

We consider the BEC of spin-1 atoms. In the absence of
a magnetic trapping potential, the macroscopic BEC wave
function is determined by a spinor wave function � with
three complex components [10]. The Hamiltonian density
of the classical Gross-Pitaevskii (GP) mean-field theory
for this system reads

H � �
�h2

2m
jr�j2 � V��

c0
2
�2 �

c2�2

2
jhFij2; (1)

where F are the 3-by-3 Pauli spin matrices, hFi � �y 	
F 	�=� denotes the average spin, � � j�j2 the total
atom density, c0 
 4� �h2�2a2 � a0�=3m, and c2 

4� �h2�a2 � a0�=3m, for aF the two-body s-wave scatter-
ing length in the total spin F channel [10]. For 23Na, aa 

�a2 � a0�=3 ’ 2aB and as 
 �2a2 � a0�=3 ’ 50aB, indi-
cating c2=c0 ’ 0:04, where aB � 0:0529 nm is the Bohr
radius. Here V denotes the external potential, for an
isotropic optical dipole trap with the frequency!: V�r� �
m!2r2=2. For 23Na c2 > 0, and the energy is minimized
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FIG. 3. Continuous deformation of the radial hedgehog into
an Alice ring. Lines represent flow lines of the order parameter
d field. We show planar sections of the monopole unperturbed
(left) and deformed into an Alice ring (right). Note that the
asymptotic behavior of d remains unchanged.

FIG. 2 (color online). The spin profile of the Alice ring
displayed in Fig. 1. The spin expectation value hFi (left) is
nonvanishing along the half-quantum vortex ring core. The
absolute value of the spin jhFij2 (right) between the isosurface
sections ranges from jhFij2 � 0:35 at the boundary of the toroid
(red) to jhFij2 � 1 (purple or dark grey) at the center of the
toroid. To display the isocaps of jhFij2 we have rotated the
surface with respect to the spin field graph hFi approximately
�=4 counterclockwise along the z axis and cut the ring half.
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by setting hFi � 0 throughout the BEC for the case of a
uniform order parameter field. The zero average spin
corresponds to the ground polar state, where we may
determine all the degenerate states by means of the
macroscopic BEC phase ’ and a real unit vector d�r�
defining the quantization axis of the spin. The BEC wave
function then reads

� �

0
@  1

 0

 �1

1
A�

����
�

p
ei’���
2

p

0
@�dx � idy���

2
p

dz
dz � idy

1
A: (2)

As in the similar polar phase of superfluid 3He-A [11–13],
however, the states �d; ’� and ��d; ’� �� are identical
[14]. The polar order parameter space, which may appear
to be S1 � S2, is actually factorized by the two-element
discrete group Z2. Consequently, we take the d field to
define unoriented axes rather than vectors.

The spherically symmetric monopole �M is obtained
from Eq. (2) by the radial hedgehog field d�r� � r̂r 

�sin� cos�; sin� sin�; cos�� [15,16], with ’ � 0 and � �
�M�r� minimizing the energy of the symmetric configu-
ration [3]. This is singular at the origin indicating a point
defect with ��0� � 0. Spinor component  0 resembles a
dark soliton and  �1 form perfectly overlapping, straight
singly quantized vortex lines with opposite circulation,
perpendicular to the phase kink plane. The topologically
invariant winding number,

W �
1

8�

Z
@�
dSi"ijkd 	

@d
@xj

�
@d
@xk

; (3)

is defined on any closed surface @� that encloses the
origin. Because the sign of d is ambiguous, though, the
sign of W is arbitrary. Moreover, because the d field is
actually unoriented, the monopole point defect may be
continuously deformed into a circular line defect, without
changing W (on any surface enclosing the singular ring),
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by puncturing a hole in the spherically symmetric core;
see Fig. 3. To keep � single valued on the disk bounded by
the ring, the macroscopic phase ’ must change by �
around any loop that links the defect circle, while there
is also a � disclination in d on the disk. We identify this
structure as a half-quantum vortex line [11,12], forming
a closed circular ring, also called an Alice ring [6–9]. To
keep � single valued on the ring itself, one can either
have � vanish there or have jhFij � 1 on the ring instead.

Thus, because of the ambiguity of the direction of d in
the polar state, different core structures can be smoothly
deformed into each other. The core stability is therefore
solely determined by energetic considerations. Physically,
the � � 0 ring evidently has higher energy than the � � 0
point, but energetic stability of the point defect against
the Alice ring with jhFij � 1 core is a nontrivial question.
We may define two healing lengths �s 
 �8�as��

�1=2 and
�a 
 �8�aa��

�1=2 in Eq. (1). They describe the length
scales over which � and jhFij, respectively, tend to their
bulk value when subjected to localized perturbations.
(We can also say that �s and �a correspond to the ex-
citation wavelengths below which density and spin fluc-
tuations cease to be energetically suppressed.) Since at the
defect core we may have either � � 0 or jhFij � 1, �s and
�a determine the core sizes in the two cases. We numeri-
cally demonstrate, by decreasing the ratio aa=as, that the
spherically symmetric monopole core with the total den-
sity suppression becomes unstable to formation of an
energetically stable Alice ring with jhFij � 1 core. We
find the radial hedgehog to be unstable at c2=c0 & 0:17 in
a linear stability analysis in bulk and in the mean-field
theory in a trap, using an experimentally feasible set of
parameters for 23Na.

Before turning to the full nonlinear mean-field theory
of the trapped BEC, we study the linear stability of the
radial hedgehog in the homogeneous case. We expand the
Hamiltonian (1), with V � 0, to second order around �M.
Perturbations of the form
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decouple from all others, for real Cj, &, and &, if & and &
satisfy (here X 
 c2=c0 and ��� 
 �M�r�=�0, where �0

denotes the constant asymptotic value of the density)

*& � �
1

2r2
�r2&0�0 �

3

r2
&� �� ���� 1�&� 2X ���&�

1

�2s
;

*& � �
1

2r2
�r2&0�0 � � ����1� 2X� � 1�

&

�2s
�
&

r2
(5)

for some real eigenvalue *. For small C � jCj, the change
in free energy due to this perturbation in � will be %E �
*C2m= �h2. Numerical solution shows [17] that there exists
one negative *, hence three degenerate instabilities pro-
portional to Ci, when c2=c0 & 0:17. We can show that no
other instabilities exist in bulk, so for c2=c0 * 0:17 the
point defect is stable. Since the perturbation (4) gives

hFi �
2C� r̂r

�������
�M

p
&

�M � C2&2 ; (6)

where hFi is with respect to the state �M � %�, we have
jhFij � 1 on a circle in the plane through the origin
perpendicular to C, at radius r�, such that �M�r�� �
�C&�r���

2. The form of �M�r� (rising monotonically
from 0 to �0) and & (decreasing monotonically to zero
as r! 1) ensures that r� grows monotonically with C.
As a result, a randomly oriented Alice ring will form
spontaneously from the symmetric monopole, as C grows
from zero by relaxation, for c2=c0 & 0:17.

In the full 3D classical mean-field theory of the spin-1
monopole in an isotropic trap, we minimized the energy
by evolving the GP equations,

i �h
@�
@t

�

�
�

�h2

2m
r2 � V � c0�

�
�� c2�hFi 	 F 	�;

(7)

in imaginary time. The initial state was an approximate
spherically symmetric monopole solution with a point
core, embedded in a Thomas-Fermi density profile. The
integration was performed on a spatial grid of 1283 points
using the split-step method. At every time step we nor-
malized the wave function to fix the total atom number.
The numerical simulations were fully 3D without impos-
ing any symmetry on � as it relaxed.

We varied the relative strength of the two interaction
coefficients c0 and c2, as well as the total atom number N.
The dynamics depends on the dimensionless interaction
strengths c00 � 4�Nas=l and c02 � 4�Naa=l, where l 

� �h=�m!��1=2. Hence, for a given atom with fixed values of
scattering lengths, the results are unchanged for any
scaling of length and time, which does not change
N2!. In optical dipole trap experiments on 23Na BECs,
a wide range of aspect ratios and trapping strengths have
been demonstrated, with the typical values of l=as vary-
ing between 500 and 4000 [4].

For small values of c2=c0, the point core deformed into
a half-quantum vortex ring.With the initial radial hedge-
hog at the trap center we found vortex ring configurations
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as local energetic minima, with the size of the ring
approximately determined by �a. In Figs. 1 and 2 we
display such results using the parameters of the spin-1
23Na with c2=c0 � 0:04 and c00 � 2� 104. With the trap-
ping frequency! � 2�� 10 Hz, this corresponds toN ’
4� 106 atoms. In the initial state of the radial hedgehog,
the components  �1 form two oppositely circulating vor-
tex lines with perfectly overlapping density profiles.
Because of dissipation, the two vortices in  �1 separated
near the trap center, forming an Alice ring. Note that this
corresponds to the growth of the perturbation C2 in
Eq. (4). The numerical noise in this example effectively
seeded the instability C2 yielding

 �M�
�1 � % �1 /

�������
�M

p

r

	�
�x�

C2r&�������
�M

p

�
�iy



: (8)

Since r&=
�������
�M

p
is constant at the origin, but vanishes as

r! 1, this means that near the center the two vortices in
 �1 separate in the xz plane. Growth of C1 involves a
similar separation in the yz plane. One can clearly see the
� winding of the macroscopic phase around closed loops
threading the Alice ring in Eq. (8).

With some initial parameters we also observed the
radial hedgehog evolving to an Alice ring with the vortex
cores in  �1 expanding, but not separating, while the
phase kink in  0 no longer maintained a vanishing den-
sity at the center. This clearly represents the growth of the
perturbation C3 in Eq. (4), since the term proportional to
&�r� is simply a perturbation in the macroscopic phase ’
of Eq. (2). In the general case of a symmetric initial
monopole, the spherical symmetry spontaneously breaks
as the system deforms due to dissipation and the resulting
ring has an arbitrary orientation.

It is easy to see that the Alice ring in bulk must
stabilize at some finite value of the radius, because the
amount of energetically costly nonzero hFi rises as the
ring grows. This was also true in a trap for small enough
rings. However, with smaller atom numbers, c00 & 104 for
23Na, a larger ring resulted, which was destabilized by
the inhomogeneous density profile: the two vortex lines in
 �1 completely detached and left the atomic cloud in
opposite directions.

The half-quantum vortex ring, shown in Figs. 1 and 2,
was still unstable with respect to drifting out of the
atomic cloud as a unit if initially displaced from the
trap center. This is because of the reduced order parame-
ter bending energy at lower atom densities. However, we
successfully stabilized the Alice ring by creating a local
density minimum at the trap center, by adding to
the harmonic trapping potential the optical potential
VL, simulating two orthogonal blue-detuned focused
Gaussian laser beams: VL � V1 exp��2�x2 � y2�=w2� �
V2 exp��2�x2 � z2�=w2�. We note that the Alice ring can
always be made long-living on experimental time scales
even without the stabilizing field, since the drift time
190402-3
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should increase with the BEC size, while the ring for-
mation time should decrease.

We also investigated the onset of the point defect core
instability by varying c02 for a given c00 � 2� 104. We
found the symmetric monopole to be unstable for c2=c0 &

0:17, in a good agreement with the linear stability analy-
sis in bulk. The precise value of the threshold is very
difficult to determine in a trap, since the convergence in
the simulations is particularly slow close to the threshold.
In the case of very long runs, numerical noise also even-
tually displaces the monopole so that it starts drifting out
of the atomic cloud. For smaller values of c02, representing
unstable Alice rings which break apart due to the inho-
mogeneous density, the instability of the point defect
occurred with much larger values of c2=c0, when the
trap length scale became comparable to the polar healing
length l� �a, emphasizing the nontrivial nature of the
finite size effects.

In the experimental preparation of an Alice ring by
relaxation, it is helpful to note that defects and textures in
multicomponent BECs may generally be viewed as com-
binations of vortex lines, rings, and phase kinks [18]. As
we already noted, the radial hedgehog has an especially
simple structure of vortex lines and phase kinks which
have been experimentally created in individual atomic
BEC components, e.g., by means of localized laser fields,
which are rapidly swept around the trap during a Raman
transition [19–21]. The spherically symmetric monopole
could similarly be created, by a sequence of Raman
pulses, in a straightforward generalization of the pulse
sequences proposed in Ref. [18]. Dissipation plays a cru-
cial role in the state engineering process and will then
perform the final step of generating a stable Alice ring by
spontaneously breaking the spherical symmetry. The
stable radius �a of the Alice ring may easily extend
over several microns, making the core quite observable,
possibly even without ballistic expansion.

The relaxation time of other defects, such as simple
vortex rings in a single-component BEC [20] via shrink-
ing, indicate that the point defect core deformation could
be rapid on experimental time scales. We may obtain a
rough estimate for the initial deformation rate due to
dissipation by thermal atoms from 1 �h!R=�kBT�, where
1 � 8�a2s�nc �hk=m denotes the Boltzmann collision rate
of thermal atoms with density �nc and !R is the unstable
Bogoliubov mode frequency. Using the same values as
before with �nc � 1013 cm�3 and T � 100 nK indicates
that the Alice ring could form in a few seconds allowing a
real-time monitoring of the deformation.

We can summarize our results in basic terms. In 23Na
BECs the weakness of the antiferromagnetic energy
(as � aa), topology, and the gradient energy of the order
parameter may conspire to favor nonvanishing spin val-
ues, even for aa > 0: It is energetically more favorable to
violate the antiferromagnetic constraint than to force the
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superfluid density to vanish. As a result, a monopole core
deforms to a ring and exhibits a nonvanishing spin ex-
pectation value and a nonzero superfluid density. In other
words, the strong order parameter bending energy close to
the singular defect mixes the polar and the ferromagnetic
phases of the spinor BEC, rather than forcing the total
superfluid density to zero at the singularity. Because of
the length scale hierarchy, the stable size of the defect
core will then be determined by �a instead of the much
smaller �s. And the creation of this intricate Alice ring
structure will occur spontaneously, from the much sim-
pler symmetric monopole, by relaxation alone.

While the motion and interaction of point defects was
analyzed in Ref. [3], the dynamics of Alice rings remains
a question for future theoretical and experimental study.
So does the possible metastability of Alice rings for c2 *

0:17c0. Topological defects in spinor BECs promise a rich
phenomenology, which current experimental techniques
will allow us to explore.
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