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FIG. 1. The load exponent as a function of the mean number
of edges hmi emanating from a new vertex for various degree
exponents � in the BA model and different system sizes, N �
104 (�) and N � 105 (�).

P H Y S I C A L R E V I E W L E T T E R S week ending
31 OCTOBER 2003VOLUME 91, NUMBER 18
Goh et al. Reply: We introduced in a recent Letter [1] the
load distribution following a power law on scale-free (SF)
networks. In addition, it was conjectured that the load
exponent � is universal as long as the degree exponent � is
in 2< � � 3, based on real-world networks and in silico
models. In the preceding Comment [2], Barthélemy ar-
gues that � is not universal, sensitive to the details of SF
networks. In this Reply, we notice that the discrepancy is
mainly caused by different usages of definition of load in
[1,2]. Following the definition used in [2], we agree with
the result of [2]; however, we find that the question of the
universality of the load exponent is not settled yet.

In [1], the load ‘k of a vertex k includes N � 1 packets
leaving and another N � 1 packets arriving at the vertex,
where N is the total number of vertices. However, those
2�N � 1� packets are not included in [2].While the differ-
ence of 2�N � 1� can be neglected for vertices with large
load ‘ in the limit of N ! 1, however, in finite-size
systems, particularly those compatible with most real-
world networks comprising N � 103 � 104 vertices, this
difference could produce a different value of �. We per-
form extensive numerical simulations on a larger scale
N � 5	 105 than the size N � 104 previously used in [1]
for the static model with � 
 2:5, following the defini-
tion in [1], and find that indeed � turns out to be lower
than � 
 2:2 beyond the error bar as argued in [2]. This
behavior also occurs in the model introduced by Barabási
and Albert (BA) when the number of edges emanating
from a newly added vertex is m � 2 in finite-size systems.
However, we will show that the universal behavior of
the load exponent is still likely as far as SF networks
are sparse.

The load exponent for the SF tree has been obtained
analytically to be � � 2:0, independent of the degree
exponent � [3,4]. We investigate how the exponent value
� � 2:0 changes as the number of loops increases. We
modify the BA model in such a way that a new vertex
attaches one or two edges to the existing network with
probability 1� p or p, respectively. The mean number of
edges emanating from a new vertex is then hmi � 1� p.
We investigate how the load distribution changes as hmi
varies. When p � 0, the network is tree, and the load
exponent is confirmed to be � 
 2:0. We find that �
increases to � 
 2:2 by increasing hmi to hmi 
 1:1 at
which the edges connecting different branches of the tree
structure form sparse loops in a nontrivial manner. The
value � 
 2:2 turns out to be robust, independent of the
degree exponent � for 2< �< 3. Such behavior persists
as long as hmi is smaller than a �-dependent critical value,
hmic, beyond which � depends on � as observed in [2].
Moreover, we find that the plateau region of � 
 2:2 is
extended as the system size N increases as shown in Fig. 1.
These data suggest that the universal behavior of � may
hold in some finite region of parameter space in the
thermodynamic limit, at least for the sparse BA model.
189804-1 0031-9007=03=91(18)=189804(1)$20.00 
Thus, the possibility of the universal behavior of the load
exponent is still an open question. Further details will be
published elsewhere [5].
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