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For a practical quantum computer to operate, it is essential to properly manage decoherence. One
important technique for doing this is the use of ‘‘decoherence-free subspaces’’ (DFSs), which have
recently been demonstrated. Here we present the first use of DFSs to improve the performance of a
quantum algorithm. An optical implementation of the Deutsch-Jozsa algorithm can be made insensitive
to a particular class of phase noise by encoding information in the appropriate subspaces; we observe a
reduction of the error rate from 35% to 7%, essentially its value in the absence of noise.
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natural two-qubit gates in optics [15]. While we do not
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A Hadamard on the query qubit then transforms it into
One of the great stumbling blocks to building quantum
computers, with their oft-touted ability to resolve certain
problems more efficiently than any classical algorithm
[1,2], is the ubiquity of decoherence. Coupling of any
element of a quantum computer to an environment de-
stroys its unitary evolution and introduces uncontrollable
noise; at first, it was thought by many [3] that these errors
would make quantum computation impossible in practice.
Since then, a variety of techniques for correcting errors
and/or building in immunity to decoherence have been
developed [4,5] and it has been proved that if errors are
kept below a certain threshold, arbitrarily large quantum
computers are possible [6]. One important technique in-
volves computing within subspaces of the full system’s
Hilbert space which remain unaffected by interaction
with the environment; these are known as decoherence-
free subspaces (DFSs) [5]. Such DFSs exist when the
interaction Hamiltonian has an appropriate symmetry.
DFSs have been demonstrated in a linear-optical experi-
ment [7] and in NMR [8] and recently to help circumvent
the technical noise which had previously plagued ion-trap
quantum computers [9]. To date, no demonstration has
been made of the use of DFSs in the context of the im-
plementation of an actual quantum-computing algorithm
[10]. In this paper, we present a linear-optical implemen-
tation of the two-qubit Deutsch-Jozsa algorithm [2,11]
and demonstrate that when a certain class of noise is
introduced into the system, greatly increasing the error
rate of the algorithm, it is possible to ‘‘encode’’ one
logical qubit into two physical qubits and take advantage
of DFSs, reducing the error rate to close to zero.

Optics is well known to be an extremely powerful arena
for the transportation and manipulation of quantum in-
formation [12]. Although due to the linearity of optics,
this arena does not allow for scalable construction of
quantum gates [13], the incorporation of detection and
postselection may render all-optical quantum computers
an attractive possibility [14]. Work also proceeds on non-
linearities which would allow for the development of
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yet have access to a truly scalable optical quantum-
computer architecture, many of the elements of any
such system would be identical to those used in simple
linear-optical geometries [13]. For this reason, linear
optics remains an important domain for the study of
quantum coherence and error correction, even while the
ultimate fate of optical quantum computing is uncertain.
Recently, striking demonstrations of quantum search al-
gorithms have been carried out using linear optics and
linear atom-photon interactions [16], as has the first veri-
fication of DFSs [7]. Additionally, it is already clear that
even if quantum computation never becomes truly prac-
tical, quantum-information processing may have a great
effect on the practice of communications and cryptogra-
phy [17]. Although some information processing will be
necessary in this area as well, the question of scalability
is not crucial, and linear-optical quantum computation
could well prove applicable for elements such as quantum
repeaters [18]. In this context, we have chosen to study the
applicability of DFSs to a linear-optical implementation,
despite the nonscalable nature of the present architecture.

The Deutsch-Jozsa algorithm is designed to distin-
guish between two classes of functions (‘‘oracles’’) on
N-bit binary inputs. ‘‘Constant’’ functions return the
same value (0 or 1) for all 2n possible inputs, while
‘‘balanced’’ functions return 0 for half the possible inputs
and 1 for the other half. Clearly, a classical algorithm
would on some occasions require as many as 2n�1 � 1
queries to unambiguously determine to which class a
given oracle belongs. By contrast, Deutsch and Jozsa
showed [11] that a quantum algorithm requires only one
such query. In the two-qubit Deutsch-Jozsa algorithm [2],
the oracle is a function f on a single bit. It takes as input a
query bit x and a signal bit y; its action is to perform the
unitary mapping jx; yi ! jx; y � f�x�i. To perform the al-
gorithm, the input is prepared in Hj0i 	Hj1i 
 1

2 �j0i �
j1i� 	 �j0i � j1i�, where H is a Hadamard gate. This state
is mapped by the oracle to 1

2 �j0i 	 �jf�0�i � jf�0�i� �
j1i 	 �jf�1�i � jf�1�i� 
 1 �j0iei
f�0� � j1iei
f�1�� 	Hj1i.
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jf�0� � f�1�i, which is equal to j0i for constant and j1i for
balanced functions. Thus measurement in the computa-
tional basis allows one to determine a global property of
f�x�, namely, f�0� � f�1�, in a single evaluation of the
function. Furthermore, the signal qubit is in fact super-
fluous after the oracle. If some source of decoherence is
present during the propagation from the oracle to the final
Hadamard, one may encode the query qubit in some DFS
of the two physical qubits.

In this experiment we represent the four basis states of
two logical qubits (j00i, j01i, j10i, and j11i, where the first
bit corresponds to the query and the second to the signal)
by a photon traveling down one of four optical rails
numbered 1–4, respectively. It is possible to implement
a universal set of one- and two-qubit operations in a four-
rail representation [13]. For example, a NOT gate on the
query qubit can be realized by simultaneously swapping
rails 1 and 3 and rails 2 and 4. A CNOT gate on the signal
qubit is implemented by swapping rails 3 and 4. To per-
form a Hadamard gate on the query qubit, we combine
rails 1 and 3 and rails 2 and 4 at two 50=50 beam splitters;
a 
 phase shift is also needed on two of the arms.
Analogous gates can be constructed for the other qubit.
The transformations introduced by the four possible func-
tions can also be implemented in this representation by
four different settings of an oracle operating as follows: if
f�0� is 1, rails 1 and 2 are swapped; if f�1� is 1, rails 3 and
4 are swapped. Thus the task of distinguishing balanced
from constant oracles reduces to that of determining
whether the number of swaps was odd or even. Note
that this oracle is capable of generating entanglement
between the two qubits, even though entanglement need
not arise for the specific input states demanded by the
algorithm.

The schematic diagram of the interferometer is shown
in Fig. 1. Consider a photon traveling down rail 2, repre-
senting the state j01i. The two pairs of 50=50 beam
splitters A1, A2 and B1, B2 implement the two
FIG. 1. Schematic of an interferometer which implements the
two-qubit Deutsch-Jozsa algorithm (a). All beam splitters are
50=50. With beam splitters C1 and C2 in place, the standard
algorithm (b) is performed. We show that an alternate encoding
(c) is preferable in the presence of random collective noise on
rails 2 and 3; replacing beam splitters C1 and C2 with beam
splitters D1 and D2 implements this modified algorithm.
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Hadamard gates on the query and signal qubits, preparing
the qubits for the oracle. Beam splitters C1 and C2 realize
the Hadamard gate on the query qubit after the oracle.
Rails 1– 4 illuminate photodiodes PD1–PD4. A photon
reaching PD1 or PD2 indicates that the value of the query
qubit after the algorithm, f�0� � f�1�, is 0. This consti-
tutes a determination that the oracle is constant, while
PD3 and PD4 indicate balanced oracles.

One source of decoherence in such systems is the phase
noise introduced by fluctuating optical path lengths, cre-
ated either by variations in distance or by temperature
variations and turbulent air flow. In real optical systems,
the stability of certain path-length differences may be
larger than that of others, either because of the physical
proximity of certain paths to one another or because of
the particular sources of mechanical or thermal noise.
This may lead to a situation where the dominant source of
decoherence exhibits a symmetry which can be exploited
for computing within DFSs. To simulate the effects
such processes could have in larger-scale, distributed
quantum-information systems, we introduced a high de-
gree of turbulence by placing the tip of a hot soldering
iron below two of the optical rails. These two optical
paths (rails 2 and 3) were spatially superposed in this
region, distinguished only by their polarization; for this
reason, they experienced essentially the same random
phase shifts. Since the outputs of the optical Deutsch-
Jozsa setup are the outputs of two parallel interferome-
ters, which measure the phase of rail 2 with respect to
that of rail 4 and rail 3 with respect to rail 1, this phase
noise destroys the interference on which the success of
the algorithm relies. On the other hand, inspection of the
optical schematic makes the physical process behind the
algorithm evident: rails 1 and 3 are prepared in phase
with one another, while rails 2 and 4 are also prepared in
phase, but 180 out of phase with the former pair. Thus,
constructive interference is observed either between 1 and
3 or between 2 and 4. If a single pair (1 and 2 or 3 and 4) is
swapped by the oracle, destructive interference is instead
observed at both interferometers, while if an even number
of swaps occurs, constructive interference is restored. So
long as each interferometer compares an output of each of
the potential swap regions in the oracle with one from the
other, it is possible to distinguish a balanced oracle (one
swap) from a constant oracle (zero or two swaps). The
strategy to deal with phase noise impressed symmetri-
cally on paths 2 and 3 now becomes clear: instead of
interfering 2 with 4 and 1 with 3, one can instead interfere
2 with 3 and 1 with 4. In this way, the random phase
appears at both inputs to the same interferometer and has
no effect on the outcome.

This modification can be expressed as an encoding of
the data into a pair of DFSs. Since our engineered phase
noise has identical effects on the two states of odd parity
(j01i and j10i, stored on rails 2 and 3, respectively) and on
the two states of even parity (j00i and j11i, stored on rails
1 and 4), each fixed-parity subspace can store a single
187903-2
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logical qubit in a decoherence-free fashion. The parity
can be written in standard Pauli matrix notation [2] as
�z

1�
z
2, where �z

i is �1 or �1 for bit i in state 0 or 1,
respectively (�z

1�
z
2 is �1 if both bits are the same and �1

otherwise). The action of the soldering iron therefore may
be modeled by the operator exp�i�z

1�
z
2���, where �� is a

fluctuating phase. In a subspace with a definite eigenvalue
of �z

1�
z
2, the random phase �� only impresses an overall

phase on the quantum state, leaving the information
within the subspace unaffected. Since the two-qubit
Deutsch-Jozsa algorithm relies on only the query qubit
after the oracle has completed its action, this qubit may be
encoded in either of these DFSs, providing immunity to
parity-dependent phase noise which occurs between the
oracle and the final Hadamard gates. As shown in
Fig. 1(c), a CNOT after the oracle encodes the query qubit
into these DFSs, and a second CNOT after the final
Hadamard can be used for decoding. The decoding
CNOT is in fact unnecessary since measurements are
performed only on the query qubit. Swapping rails 3
and 4 performs the encoding; or equivalently, beam split-
ters C1 and C2 may be replaced by D1 and D2.

The experimental setup is shown in Fig. 2. The device
was characterized with a large ensemble of identical
photons in a coherent state produced by a 780 nm diode
laser. To implement the four different oracle settings a
variable beam splitter (VBS) was designed. This VBS
consists of a half wave plate between two polarizing
beam splitters (PBS); any desired reflectivity can be
obtained with this optical arrangement. To construct our
oracles, a pair of these VBSs was used. Each VBS was
adjusted to act either as a swap or the identity. Hadamards
were constructed using similar VBSs. After the oracle,
rails 2 and 3 were combined into the same spatial mode in
a PBS to guarantee the collective phase shift for these
FIG. 2. Experimental setup. Variable-reflectivity beam split-
ters are implemented using a pair of polarizing beam splitters
(PBS) and a half wave plate. The ‘‘preparation’’ portion of the
interferometer produces the same superposition as the pair of
Hadamards in Fig. 1. The oracle consists of two variable beam
splitters which can each be set to exchange two rails or leave
them unchanged, plus two half wave plates used to induce 

phase shifts on two of the outputs. The random noise is
generated by inducing turbulent airflow under rails 2 and 3
while they are spatially superposed.
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beams in the presence of decoherence, and then separated
out by another PBS. The transformation between two
different encodings was performed by applying another
VBS to either swap rails 3 and 4 or not. The experimental
setup was designed such that in all of these interferome-
ters the spatial path lengths are always balanced. The
average fringe visibility for all four output ports and all
possible settings of the oracle and encoding was mea-
sured to be about 95%.

The experiment was performed by measuring the sig-
nals at detectors PD1 through PD4 as the half wave
plates were cycled through all four oracles and both
encodings. The intensities at detectors PD1–PD4 were
normalized to their sum, to yield the probabilities of a
photon reaching each of the detectors. These normalized
intensities are plotted in Fig. 3 for all four oracle settings,
in both encodings. In the DFS encoding, for the constant
functions, all photons should arrive at detectors PD1 or
PD2, the ‘‘constant pair’’ of detectors; for the balanced
functions, all photons arrive at PD3 and PD4, the ‘‘bal-
anced pair.’’ In the standard encoding, the roles of PD2
and PD4 are interchanged; thus for this encoding, the
constant (balanced) pair is PD1 and PD4 (PD3 and
PD2). In Fig. 4, for constant and balanced functions
and in each encoding, we plot the probability of a photon
reaching either detector in the corresponding constant or
balanced pair. The average error rates were measured to
be about 8% in the absence of added noise. The sources of
errors in this experiment were mostly due to imperfect
visibility (due to alignment and wave plate setting), and
uncertainty and drift in the optical phase settings, where
0
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FIG. 3. Experimental data: Normalized intensity is a mea-
sure of the fraction of photons reaching each detector, PD1
through PD4, denoted by dotted, long dashed, solid, and short
dashed lines, respectively. Data are shown for both the DFS and
standard encoding, for each of the four oracles (00, 01, 10, and
11); C indicates ‘‘constant’’ oracles while B indicates ‘‘bal-
anced’’ oracles. The bottom plot shows the same data in the
presence of noise. Note that the noise has a much more
significant effect in the case of the standard encoding.
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FIG. 4. The probability of the algorithm returning a 0 or a 1
for each of the oracles, in each encoding, with (bottom plot) and
without (top plot) the addition of phase noise. The data are
extracted by summing the normalized intensities from Fig. 3
for the pair of detectors indicating the constant functions
(dashed line), and the balanced functions (solid line). Note
that the success rate is close to unity even in the presence of
noise when the DFS encoding is used.
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the 12 phase uncertainty in our adjustments contributes
2% to the error rate. The drift of the interferometer
during measurement was kept low by balancing all path
lengths and enclosing the interferometer. In the standard
algorithm, introduction of the turbulent airflow increased
the error rate (averaged over all oracle settings for the
duration of the acquisition) to 35%. When the DFS encod-
ing was used in the presence of turbulence, however, the
error rates dropped to 7%, essentially equal to the value in
the absence of noise.

We have implemented the Deutsch-Jozsa algorithm in
an optical interferometer, and provided the first experi-
mental demonstration of how decoherence-free subspaces
can be used to make such a quantum algorithm insensi-
tive to noise with appropriate symmetry properties. We
engineered realistic random phase noise for our optical
system and demonstrated a significant reduction in
error rate by encoding information into decoherence-
free subspaces. Phase noise is an ever present issue in
coherent optical systems and often exhibits certain cor-
relations which can be exploitable in this manner. The
DFS encoding presented here is one promising way of
controlling decoherence in quantum systems and could be
directly incorporated into scalable quantum computation
schemes; it is also applicable to the area of quantum com-
munications and cryptography. The appropriate applica-
tion of such error-avoidance techniques will be essential
in order for quantum-information processing to achieve
its great promise.
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