
P H Y S I C A L R E V I E W L E T T E R S week ending
31 OCTOBER 2003VOLUME 91, NUMBER 18
Role of Interactions in the Far-Infrared Spectrum of a Lateral Quantum-Dot Molecule
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We study the effects of electron-electron correlations and confinement potential on the far-infrared
spectrum of a lateral two-electron quantum-dot molecule by exact diagonalization. The calculated
spectra directly reflect the lowered symmetry of the external confinement potential. Surprisingly, we
find interactions to drive the spectrum towards that of a high-symmetry parabolic quantum-dot. We
conclude that far-infrared spectroscopy is suitable for probing effective confinement of the electrons in
a quantum-dot system, even if interaction effects cannot be resolved in a direct fashion.
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of two Kohn modes, whose dispersion does not depend on
either the number of confined electrons or their interac-

distances d, and with d � 0 it simplifies to one parabolic
QD. We use the GaAs material parameters m�=me �
Nanoscale semiconductor structures are very promis-
ing for future components of microelectronic devices.
These systems are also scientifically very interesting as
they exhibit novel and fundamental quantum effects. The
most prominent difference between the two-dimensional
artificial atoms, or quantum dots (QD), and their normal
counterparts are the enhanced correlation and magnetic
field effects. In addition to that, the new features can be
controlled by the tunable system parameters, both experi-
mentally and in theoretical models. Coupling together
QDs, one can construct QD molecules (QDM). The elec-
tronic structure of these is also quite intriguing. For
example, the two-electron QDM has a highly nontrivial
spin-phase diagram and composite-particle structure of
the wave function [1]. One experimental possibility to
probe the new physics of nanostructures is to use far-
infrared (FIR) absorption spectroscopy [2,3]. For highly
symmetric QDs, the FIR spectra reflect only the center-
of-mass properties of the system. If the symmetry is
lowered, the relative motion of the electrons starts to
couple to the center-of-mass motion, enabling one to
study the many-body correlation effects using FIR.

In this Letter, we present FIR spectra for a two-
electron QDM using exact diagonalization. The method
used solves accurately the quantum-mechanical model
for a QDM, revealing the important electron-electron
correlation effects. Our calculated spectra show clear
deviations from the spectra of highly symmetric QDs.
To analyze these deviations, we vary our system parame-
ters in order to separate the correlation effects from the
single-particle effects of the low-symmetry confinement
potential. This analysis shows, however, that these effects
are ultimately entangled. Furthermore, we find, very
surprisingly, that the correlation effects actually compen-
sate the lowered symmetry of the QD confinement poten-
tial, resulting in spectra much closer to an electron in a
high-symmetry QD than in a low-symmetry one.

The starting point for understanding FIR spectra is the
highly symmetric, parabolic QD. This spectrum consists
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tions [4]. Several experiments on QDs have shown devia-
tions of the FIR spectra from the Kohn modes [3,5–8]. It
is clear that these deviations require a nonparabolic QD,
but the detailed cause of the deviations, and thus the
interpretation of the measured spectra, is difficult to
obtain. An especially interesting question is how the
electron-electron interaction and correlation effects
emerge in the FIR spectrum when the symmetry of the
QD is lowered. In our model, we can tune both the
deviation of the potential from being perfectly parabolic
as well as the electron-electron interaction strength,
which enables us to analyze the source of the nontrivial
details seen in the FIR spectra. This type of analysis is
extremely important for explaining the details of the
spectra.

The calculated FIR spectra have shown that a broken
xy symmetry (e.g., elliptic or rectangular) is required to
observe the zero-field splitting of the Kohn modes as well
as additional modes, and a broken rotational symmetry
(e.g., square) is required to observe anticrossings [9–14].
However, the role of interaction effects and lowered QD
symmetry in FIR spectra is not fully analyzed in these
studies. Our QDM model suits perfectly for this detailed
analysis as the FIR spectra show all the above-mentioned
features. One interesting finding is that the electron-elec-
tron interactions drive the FIR spectrum closer to the
Kohn modes instead of making the deviations more pro-
nounced. This means that the electrons feel an effective
potential that is more parabolic than the the bare confine-
ment one. Thus the interactions smoothen the nonparabo-
licity of the external potential.

We model the two-electron QDM by a 2D Hamiltonian
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where Vc is the external confining potential, for which
we choose 1
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This potential separates to two QDs at large interdot
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0:067 and � � 12:4, and the confinement strength �h!0 �
3:0 meV. A is the vector potential of the magnetic field
(along the z axis) taken in the symmetric gauge.We use C
to scale the Coulomb interaction strength. The wave
functions and energies of the ground and excited states
are found by the exact diagonalization of the Hamiltonian
matrix as in Ref. [1].

Using the Fermi golden rule within the electric-dipole
approximation for the perturbing electromagnetic field,
the transition probability from the ground state to the lth
excited state can be calculated as
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where we have used right- or left-handed circular polar-
ization of the field, corresponding to the two possible
signs marked with ‘‘
’’. We mainly present results
for unpolarized light, averaging over the two circular
polarizations. In addition to that, we decompose one
selected spectrum to two circular as well as to two axial
polarizations.
FIG. 1. FIR spectra of QDM with two different distances [(a) an
[(a)–(d)] and reduced [(e)–(h)] Coulomb strengths C. Upper subfigu
lines indicates the transition points from spin-singlet (S � 0) to spin
as a function of magnetic field, and the width of lines indicate t
spectrum. Circles show the Kohn modes of an isolated parabolic Q
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The calculated FIR spectra are shown in Fig. 1 for
several different system parameters.We plot the transition
energy as a function of the magnetic field using a line
whose width is proportional to the transition probability.
We have included only the transitions which have a
probability of more than 1% of the maximum value. To
make it easier to compare the relative strengths of the
different resonances, we have plotted the probabilities
also separately below each spectrum. In addition to that,
we show the energies of the two Kohn modes of a para-
bolic QD using open circles. The upper row of figures
present spectra for the total spin S � 0 and the lower one
for S � 1. The spectra for both spin types are shown for
two interdot distances d and three Coulomb strengths C.
The ground state of our system changes from S � 0 to
S � 1 when the magnetic field is increased (see Ref. [1]
for more details), and this transition is shown by a verti-
cal line in the four spectra of the fully interacting cases
C � 1. One should note that the transition probabilities
between different spins are zero, and thus S is conserved
in the allowed transitions.

As a general feature of the calculated spectra shown in
Fig. 1 one can see that each spectrum has as a major
component two branches, where the higher one (!�) has a
d (b): d � 10 nm, (c)–(h): d � 30 nm] between QDs and full
res correspond to S � 0 spectra and a lower S � 1 one. Vertical
-triplet (S � 1) state. Spectra show the energy of absorbed light
he transition probabilities, also plotted separately below each
D.
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FIG. 2. Polarization dependence of FIR absorption for a
QDM with d � 30 nm, S � 0, and C � 1. The left panel
corresponds to linearly polarized radiation and the right panel
to two circular polarizations. At B � 0 the modes are linearly
polarized and for large B they approach circular polarizations.
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positive dispersion and the lower (!�) a negative one. For
the parabolic QD, these branches are the two Kohn modes
(circles in the figures). Now the lowered symmetry of the
QD and the correlation effects show up in the FIR spectra
as a deviation from the Kohn modes. These deviations are
the splitting of !� and !� at B � 0, the anticrossings in
!�, and an additional mode !�2 above !� in the S � 1
spectra. Next we will analyze these deviations in detail.

Figures 1(a) and 1(b) show the (C � 1) spectra for the
distance d � 10 nm which corresponds to closely coupled
QDs. One can see that there are only minor deviations
from the Kohn modes. For S � 0, one can see a small B �
0 splitting of the two modes. There are also anticrossings
in the upper modes, but these are hardly visible as the
energy gap is much smaller than the linewidth. These
anticrossings are, however, visible as oscillations in the
transition probabilities shown below the spectra. These
probabilities also show that the upper mode of the S � 1
spectra actually consists of two levels. These levels are
energetically nearly degenerate, but the probabilities vary
as can be seen in lower part of Fig. 1(b). The sum of the
two upper modes adds up to a probability which is nearly
constant and close to the probability of the lower mode.

If we increase the distance d between QDs, the confine-
ment potential becomes less parabolic. In the extreme
limit, however, the two QDs decouple and one is left
with two electrons localized in separated dots.
Figures 1(c) and 1(d) show the spectra for d � 30 nm
which is in the interesting range of coupling between
the two QDs. One can see that the features discussed for
d � 10 nm are again present, but at this time much
clearer in the spectra. The B � 0 splitting is rather large
for S � 0, and there is also a small splitting in the S � 1
case. There are many more anticrossings than in the d �
10 nm case, and those for weak B now have a clear energy
gap. The two nearly degenerate modes of the S � 1 case
are now split in energy, and the higher one (!�2) has a
smaller transition probability than !�. The comparison
of the spectra of Figs. 1(a)–1(c) and 1(b) and 1(d) shows
that the first anticrossing point is rather insensitive to the
change of d even if the gap in energy opens up clearly. A
further comparison shows that at B � 0, the !� mode
stays at the energy of 3 meV, but !� is lowered. The
splitting of the modes results from the fact that the
symmetry in x and y directions is broken in the confine-
ment potential for a nonzero d. For our Hamiltonian, the
confinement along y direction is kept parabolic even for
d > 0, and the strength in this direction is 3 meV. For the
x direction, the potential is nonparabolic for d > 0, and
the effective strength of an approximating parabolic con-
finement is smaller than 3 meV for any finite d. In this
way, the B � 0 modes correspond to excitations to either
the short or long axis of the system. This fact can be
further demonstrated by considering the spectra of x- and
y-polarized radiation, presented in Fig. 2(a). One can see
that at B � 0 the transitions are given purely by either of
187401-3
the two linear polarizations. For a nonzero B, the two
linear polarizations mix due to a term A � r in the
Hamiltonian. Measurements using linearly polarized ra-
diation lead to similar conclusions, see Refs. [6–8]. For
a strong magnetic field, the magnetic field length (lB �������������
�h=eB

p
) becomes smaller than the confinement length

(l0 �
������������������
�h=!0m

�
p

) at B  1:7 T. Thus at greater B, the
harmonic Landau potential dominates over the QDM
potential and the electrons start to localize in the minima
of the confinement potential [1]. Therefore, the nonpar-
abolicity is diminished. The same effect can also be seen
in the absorption of circularly polarized radiation, shown
in Fig. 2(b).

To separate the effects of the nonparabolic confinement
potential from those of interactions on the FIR spectra,
we have performed calculations with reduced Coulomb
interaction strengths 0 � C< 1.We present results for the
d � 30 nm case as it shows highly nontrivial spectra.
Figures 1(g) and 1(h) show a noninteracting spectra C �
0, Fig. 1(e) shows a S � 0 spectrum for C � 0:2, and
Fig. 1(f) the S � 1 one for C � 0:5. Different intermedi-
ate values of C are chosen for different S as the ones
shown are the most representative ones. Comparison of
the C< 1 spectra to those of Figs. 1(c) and 1(d) with C �
1 shows a very surprising feature: the spectra for the
reduced interaction strengths differ much more from
the Kohn modes than the fully interacting cases. The
splitting of the modes at B � 0 grows as the interactions
are reduced, the anticrossing gaps are in general clearer,
although a direct comparison is not very easy as there are
many shifts in the anticrossing positions. In addition, the
!�2 mode of S � 1 becomes more distinct in the spectra
as C is reduced.

We start the analysis of the C< 1 spectra from the
zero-field splitting of the two modes. The potential along
the y axis is parabolic, and !� at B � 0 is not affected by
187401-3
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the interactions. On the other hand, the excitation energy
along the nonparabolic axis is clearly influenced by scal-
ing C. The Coulomb repulsion effectively steepens the
confinement which leads to an increase in the excitation
energy.

In experiments for elliptic QD lattices, the zero-field
resonance of !� was found to exhibit an unexplained and
clear dependence on the number of electrons in the QD
[8]. The lowest energy was observed with the smallest
number of electrons. As the noninteracting S � 0 spec-
trum coincides with the spectrum of a one-electron
QDM, one can study the particle number dependence of
!� for the smallest particle numbers. Interestingly, we
find a very similar dependence in our data by comparing
the corresponding spectra in Figs. 1(c) and 1(g). The
reduction of the B � 0 excitation in Ref. [8] occurs only
in the long-axis direction. This implies a nonparabolic
potential in that direction, and on the other hand, a
parabolic one in the short-axis direction.

Another interesting question is how the anticrossings
change when the interactions are scaled down with C< 1.
For all interaction strengths, the energy gap at the anti-
crossing point gets smaller as one moves to stronger B.
This can be seen to result from the localizing effect of the
magnetic field: as the electrons localize around the po-
tential minima, they feel a more parabolic external con-
finement. Now when the interactions are made weaker, the
positions of the anticrossings move, in general, to higher
B. However, the energy gaps associated to fully and non-
interacting cases are nearly the same; the change is
typically less than 10%. Thus the reduced interaction is
compensated by the stronger localizing effect of B at the
new anticrossing position of higher B. This can be under-
stood by noting that interactions enhance localization:
the higher kinetic energy of localization is compensated
by the reduced interaction energy. In the extreme limit, a
Wigner molecule of electrons is formed [15]. It is now
tempting to interpret this balance between the two local-
izing effects in the way that the interactions affect the
anticrossings only indirectly via the effective potential.
Furthermore, as one cannot evidently identify any clear
detail of the spectra to result from the electron-electron
interactions, the possibility of FIR spectroscopy to reveal
correlation effects is somewhat questionable. Its ability,
however, to probe for the effective confinement potential
of electrons is clear. This is especially true if various
polarizations of radiation are used.

To summarize, we have presented FIR spectra of a
lateral two-electron quantum-dot molecule and studied
the effects of confinement potential and correlations on
the spectra.We have shown that lowering the symmetry of
the confinement potential induces changes in the spectra.
These changes are deviations from the two Kohn modes,
and include the splitting of zero-field resonances, anti-
crossings in !�, and an additional mode above !� in the
187401-4
spin-triplet spectrum. We have studied the effect of the
electron-electron interactions on these deviations, and
surprisingly, the interactions drive spectra towards those
of a high-symmetry QD. All the deviations from Kohn
modes listed above are reduced as the interactions are
turned on. This leads to an interesting conclusion: the
deviations from the Kohn modes result merely from the
nonparabolic external confinement potential. The interac-
tions change the effective potential of the electrons, but as
our results show, the resulting potential is more parabolic
than the bare external confinement. In this way, the re-
sulting FIR spectra are closer to Kohn modes than the
noninteracting ones. In addition, our results show that
probing interaction effects by FIR spectroscopy is not
straightforward, as clear signatures of interactions are
not present even in the two-electron case where the inter-
action effects should be strongest. On the other hand, FIR
spectroscopy is able to reveal the nonparabolicity of the
external confinement potential very efficiently, particu-
larly if polarized radiation is used.
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