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Full Counting Statistics of Multiple Andreev Reflections
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We derive the full distribution of transmitted particles through a superconducting point contact of
arbitrary transparency under voltage bias. The charge transport is dominated by multiple Andreev
reflections. The counting statistics is a multinomial distribution of processes, in which multiple charges
ne (n � 1; 2; 3; . . . ) are transferred through the contact. For zero temperature we obtain analytical
expressions for the probabilities of the multiple Andreev reflections. The current, shot noise, and high
current cumulants in a variety of situations can be obtained from our result.
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e�1� 2�=jeVj�. However, the question of whether the
charge in these contacts is indeed transferred in big

and the right contact. The symbol 
 implies that the
products of the Green functions are convolutions over
The complete understanding of the electronic transport
in mesoscopic systems requires information that goes
beyond the analysis of the current. This explains the great
attention devoted in the last few years to current fluctua-
tions in these systems [1]. An important goal is to obtain
the full current distribution. This was realized by Levitov
and co-workers [2], who borrowed the concept of full
counting statistics (FCS) for photons and adapted it to
electrons in mesoscopic systems. FCS gives the probabil-
ity P�N� that N charge carriers pass through a conductor
in the measuring time. From the knowledge of these
probabilities one can easily derive not only the conduc-
tance and noise, but all the cumulants of the current
distribution. Since the introduction of FCS for electronic
systems, the theory has been sophisticated and applied to
many different contexts (for a recent review, see [3]). In
particular, one of the authors and Nazarov have shown
that, based on a Keldysh-Green function method, one can
calculate in a unified manner the FCS of all contacts
involving superconducting elements [4,5].

In the context of superconductivity it was shown in
Ref. [6] that the FCS of a normal metal-superconductor
point contact is a binomial distribution of pairs of elec-
trons, which proceed in the superconductor as Cooper
pairs. However, the FCS in the basic situation of a point
contact between two superconductors out of equilibrium
has not been investigated yet. In this system the transport
properties for voltages V below the superconducting gap
� are dominated by coherent multiple Andreev reflec-
tions (MAR) [7]. Recently, the microscopic theory of
MAR [8] has provided new insight into this problem
and has allowed the calculation of properties beyond
the current such as the shot noise [9]. The predictions of
this theory have been quantitatively tested in an im-
pressive series of experiments in atomic-size contacts
[10–12]. In particular, the analysis of the shot noise
[9,12] has suggested that the current at subgap energies
proceeds in ‘‘giant’’ shots, with an effective charge q�
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chunks can be rigorously resolved only by the analysis
of the FCS. This leads us to the central question addressed
in this Letter: what is the FCS of MAR?

The answer, which we derive below, is that the statistics
is a multinomial distribution of multiple charge transfers.
Technically, we find that the cumulant generating func-
tion (CGF) for a voltage V has the form

S�
� �
t0
h

Z eV

0
dE ln

"
1�

X1
n��1

Pn�E;V��ein
 � 1�

#
; (1)

where t0 is the measuring time. The CGF is related to the
FCS by P�N� �

R
�
���d
=2�� exp	S�
� � iN

. The dif-

ferent terms in the sum in Eq. (1) correspond to transfers
of multiple charge quanta ne at energy E with the proba-
bility Pn�E;V�, which can be seen by the �2�=n� period-
icity of the accompanying 
-dependent counting factor.
This result proves that the charges are indeed transferred
in large quanta. Below we find for any kind of super-
conducting junction explicit expressions for Pn�E;V�,
which is just the probability of an nth-order MAR. In
this process a quasiparticle injected at energy E is n� 1
times Andreev reflected to be transmitted at energy E�
neV, resulting in a transfer of n electron charges. This is
illustrated in Fig. 1 for BCS superconductors.

To arrive at these conclusions, we consider a voltage-
biased superconducting point contact, i.e., two supercon-
ducting electrodes linked by a constriction, which is
shorter than the coherence length and is described by a
transmission probability T. To obtain the FCS in our
system of interest we make use of the Keldysh-Green
function approach to FCS introduced by Nazarov and
one of the authors [4,5]. The FCS of superconducting
constrictions has the general form [5]

S�
� �
t0
h
Tr ln

�
1�

T
4
	f �GG1�
�; �GG2g
 � 2


�
: (2)

Here �GG1�2� denote matrix Green functions of the left
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FIG. 1 (color online). Schematic representation of the MARs
for BCS superconductors with gap �. We have sketched the
density of states of both electrodes. In the upper left panel we
describe the process in which a single electron tunnels through
the system overcoming the gap due to a voltage eV � 2�. The
other panels show MARs of order n � 2; 3; 4. In these processes
an incoming electron at energy E undergoes at least n� 1
Andreev reflections to finally reach an empty state at energy
E� neV. In these MARs a charge ne is transferred with a
probability, which for low transparencies goes as Tn. At zero
temperature they have a threshold voltage eV � 2�=n. The
arrows pointing to the left in the energy trajectories indicate
that a quasiparticle can be normal reflected. The lines at
energies below E and above E� neV indicate that after a
detour a quasiparticle can be backscattered to finally contribute
to the MAR of order n.
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the internal energy arguments, i.e., �G1 
G2��E;E0� �R
dE1G1�E;E1�G2�E1; E0�. The trace runs not only over

the Keldysh-Nambu space, but also includes integration
energy. For a superconducting contact at finite bias volt-
age the CGF depends on time and Eq. (2) is integrated
over a long measuring time t0, much larger than the
inverse of the Josepshon frequency.

Let us now describe the Green functions entering
Eq. (2). The counting field 
 is incorporated into the
matrix Green function of the left electrode as follows:

�GG 1�
; t; t0� � e�i
 ���K=2 �GG1�t; t
0�ei
 ���K=2: (3)

Here �GG1�t; t0� is the reservoir Green function in the ab-
sence of the counting field and ���K � �̂�3 ���3 a matrix in
Keldysh( ^ )-Nambu( � ) space. We set the chemical poten-
tial of the right electrode to zero and represent the Green
functions by �GG1�t; t

0� � eieVt ���3 �GGS�t� t0�e�ieVt0 ���3 and
�GG2�t; t0� � �GGS�t� t0�. Here, we have not included the dc

part of the phase, since it can be shown that it drops from
the expression of the dc FCS at finite bias. �GGS is the Green
function of a superconducting reservoir (we consider the
187001-2
case of a symmetric junction), which reads

�GGS�E� �
�
� �AA� �RR�f � �RR � �AA� �RR�f
� �AA� �RR��1� f� � �RR� �AA�f � �AA

	
: (4)

Here �RR� �AA��E� are retarded and advanced Green functions
of the leads and f�E� is the Fermi function. Advanced and
retarded functions in (4) have the Nambu structure
�RR� �AA� � gR;A ���3 � fR;A ���1 fulfilling the normalization con-
dition f2 � g2 � 1. They depend on energy and the super-
conducting order parameter �.

In Eq. (2) the matrix appearing inside the logarithm
has an infinite dimension in energy space. In the case of
N-N or N-S contacts such a matrix is diagonal in this
space, which makes almost trivial the evaluation of the
FCS. In the S-S case at finite bias this is no longer true,
which introduces an enormous complication.

We now tackle the problem of how the functional
convolution in Eq. (2) can be treated. The time depen-
dence of the Green functions leads to a representation of
the form �GG�E;E0� �

P
n
�GG0;n�E���E� E0 � neV�, where

n � 0;�2. Restricting the fundamental energy interval
to E� E0 2 	0; eV
 allows one to represent the convo-
lution as a matrix product, i.e., �G1 
G2��E;E0� !
� �GG1

�GG2�n;m�E;E0� �
P

k�G1�n;k�E;E0��G2�k;m�E;E0�. We
write the CGF as S�
� � �t0=h�Tr ln �QQ, where �QQ � 1�
�

����
T

p
=2�	 �GG1�
� � �GG2
 [13]. The trace in this new represen-

tation is written as
R

eV
0 dE

P
nTr ln� �QQ�nn. In this way the

convolution is reduced to matrix algebra for the infinite-
dimensional matrix �QQ. Still, the task to compute Tr ln �QQ is
nontrivial. However, noting that Tr ln �QQ � lndet �QQ, it is
obvious at this stage that det �QQ has the form of a Fourier
series in 
, which allows us to write the CGF as follows:

S�
� �
t0
h

Z eV

0
dE ln

" Xn�1

n��1

P0
n�E;V�ein


#
: (5)

Keeping in mind the normalization S�0� � 0, it is clear
that one can rewrite this expression in the form antici-
pated in Eq. (1), where the probabilities are given by
Pn�E;V� � P0

n�E;V�=
Pn�1

n��1 P0
n�E;V�. Of course, one

has still to extract the expression of these probabilities
from the determinant of �QQ, which is a nontrivial task. It
turns out that �QQ has a block-tridiagonal form, which
allows one to use a standard recursion technique. We
define the following 4� 4 matrices:

�FF �n � �QQ�n;�n � �QQ�n;�n�2
�FF�1
�n�2

�QQ�n�2;�n; n � 2;

�FF0 � �QQ0;0 � �QQ0;�2
�FF�1
�2

�QQ�2;0 � �QQ0;2
�FF�1
2

�QQ2;0;

(6)

where �QQn;m�E�� �QQ�E�neV;E�meV�.With these defini-
tions, det �QQ is given by det �QQ �

Q
1
j��1 det �FF2j. In practice,

det �FFn � 1 if jnj � �=jeVj. This reduces the problem to
the calculation of determinants of 4� 4 matrices.

In the zero-temperature limit one can work out this
idea analytically to obtain the following expressions for
the probabilities:
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(7)

Here, we have used the shorthand gA;R
n �E� � gA;R�E� neV�, and we defined

Z%
�n � 1�

����
T

p

2
�g%

��n�1� � g%
�n� �

T
4
�f%

��n�1��
2B%

��n�2�; n � 0; (8)

where % � R;A, Kn;m � �
Q

1
j�1 det �FFn�2j��

Q
1
j�1 det �FFm�2j�, and the different functions can be expressed as follows:
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FIG. 2 (color online). Current contribution of processes n �
1; . . . ; 10, from right to left, as a function of voltage for BCS
superconductors of gap �. The different panels correspond to
different transmissions. Notice the logarithmic scale in the
upper panels.
Notice that, since at zero temperature the charge flows
only in one direction, only the Pn with n � 0 survive. Let
us remark that Pn�E;V� are positive numbers bounded
between 0 and 1. Although at a first glance they look
complicated, they can be easily computed and provide
the most efficient way to calculate the transport proper-
ties of these contacts. In practice, to determine the func-
tions BA;R

n and det �FFn, one can use the boundary condition
BA;R

n � det �FFn � 1 for jnj � �=jeVj. For perfect trans-
parency �T � 1� the previous expressions greatly simplify
and the probabilities Pn�E;V� can be written as

Pn �
Xn�1

l�0

�1�ja�n�lj
2�

" Yl�1

k��n�l�1

jakj
2

#
�1� jalj

2�; (10)

where a�E� is the Andreev reflection coefficient defined as
a�E� � �ifR�E�=	1� gR�E�
, and an � a�E� neV�.

In view of Eqs. (7)–(9) the probabilities Pn can be
interpreted in the following way. Pn is the probability
of a MAR of order n, where a quasiparticle in an occupied
state at energy E is transmitted to an empty state at
energy E� neV. The typical structure of the leading
contribution to this probability consists of the product
of three terms. First, J0 gives the probability to inject
the incoming quasiparticle at energy E. The termQ

n�1
k�1�T=4�jfA

k j
2 describes the cascade of n� 1 Andreev

reflections, in which an electron is reflected as a hole and
vice versa, gaining an energy eV in each reflection.
Finally, Jn gives the probability to inject a quasiparticle
in an empty state at energy E� neV. In the tunnel regime
Pn�E;V� � �Tn=4n�1�'0'n

Q
n�1
k�1 jf

A
k j

2, '�E� being the
reservoir density of states. This interpretation is illus-
trated in Fig. 1, where we show the first four processes
for BCS superconductors. The product of the determi-
nants in the expression of P0

n [see Eq. (7)] describes the
possibility that a quasiparticle makes an excursion to
energies below E or above E� neV [14]. In the tunnel
regime this possibility is very unlikely and at perfect
transparency is forbidden. As can be seen in Eq. (10),
187001-3
for T � 1 the quasiparticle can move only upwards in
energy due to the absence of normal reflection.

From the knowledge of the FCS one can get a deep
insight into the different transport properties by analyz-
ing the role played by every process. For instance, in
Fig. 2 we show the contribution to the dc current of the
individual processes, i.e., In � �2e=h�

R
dE nPn, for the

case of BCS superconductors of gap �. In this case fA;R �
i�=	�E� i��2 ��2
, where � � 0�, and gA;R follows
from normalization. As can be seen in Fig. 2, a MAR of
order n has a threshold voltage eV � 2�=n, below which
it cannot occur. The opening of MARs at these threshold
voltages is the origin of the pronounced subgap structure
visible in the different transport properties (see Fig. 3).
Notice also that at low transmission the MAR of order n
dominates the transport for voltages 	2�=n; 2�=�n� 1�
,
while at high transparencies several MARs give a signifi-
cant contribution at a given voltage. This naturally ex-
plains why the effective charge is quantized only in the
tunnel regime [9,12].
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FIG. 3 (color online). (b),(c) Second and third cumulant at
zero temperature for a contact between BCS superconductors.
Both are normalized to the first cumulant (the average current)
shown in panel (a). The transmissions are indicated in the plots.
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From the CGF one can easily calculate the cumulants
of the distribution and in turn many transport properties.
Of special interest are the first three cumulants C1 � N,
C2 � �N � N�2, and C3 � �N � N�3, which correspond
to the average, width, and skewness of the distribution,
respectively. From the fact that the FCS is a multinomial
distribution, it follows that at zero temperature these
cumulants can be expressed in term of the probabilities
Pn�E;V� as Cn�V� � �t0=h�

R
eV
0 dECn�E;V�, where

C1�E;V� �
X1
n�1

nPn; C2�E;V� �
X1
n�1

n2Pn �C2
1�E;V�;

C3�E;V� �
X1
n�1

n3Pn �C1�E;V�	C2
1�E;V�� 3C2�E;V�
:

The first two cumulants are simply related to the dc cur-
rent, I � �2e=t0�C1, and to the zero-frequency noise SI �
�4e2=t0�C2. In Fig. 3 we show C2 normalized by C1, which
reproduces the results for the shot noise reported in the
literature [9]. In this figure we also show C3. This cumu-
lant determines the shape of the distribution, and it is
attracting considerable attention [15,16] because it con-
tains information on nonequilibrium physics even at tem-
peratures larger than the voltage. As seen in Fig. 3, at low
transmissions C3 � q2C1, where q�V� � 1� Int�2�=eV�
is the charge transferred in the MAR which dominates the
transport at a given voltage. This relation is a striking
example of the general relation conjectured in Ref. [15].
For higher transmissions this cumulant is negative at high
voltage as in the normal state, where C3 � T�1� T� �
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�1� 2T�, but it becomes positive at low bias. This sign
change is due to the reduction of the MAR probabilities at
low voltage. After the sign change there is a huge increase
of the ratio C3=C1, which is a signature of the charge
transfer in large quanta. Finally, at T � 1 the cumulants
Cn (with n > 1) do not completely vanish due to the fact
that at a given voltage different MARs give a significant
contribution, and therefore their probability is smaller
than 1 [see Fig. 2(d)].

In summary, we have demonstrated that in super-
conducting contacts at finite voltage the charge transport
is described by a multinomial distribution of multiple
charge transfers. This proves that in the MAR processes
the charge is transmitted in large quanta. We have ob-
tained analytically the MAR probabilities at zero tem-
perature, from which all transport properties are easily
computed. Our result constitutes the culmination of the
recent progress in the understanding of MARs, which are
a key concept in mesoscopic superconductivity.
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