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Quantum adiabatic pumping of charge and spin between two reservoirs (leads) has recently been
demonstrated in nanoscale electronic devices. Pumping occurs when system parameters are varied in a
cyclic manner and sufficiently slowly that the quantum system always remains in its ground state. We
show that quantum pumping has a natural geometric representation in terms of gauge fields (both
Abelian and non-Abelian) defined on the space of system parameters. Tunneling from a scanning
tunneling microscope tip through a magnetic atom could be used to demonstrate the non-Abelian
character of the gauge field.
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Normally transport of electrical charge is dissipative
(i.e., it produces heat). However, quantum adiabatic
pumping [1] provides a means in nanoscale electronic
devices to use novel quantum effects to transport single
electrons with minimal dissipation [2]. Furthermore, it is
also possible to pump electron spin without pumping
charge [3,4]. Both charge [5] and spin [6] pumping have
been recently achieved experimentally, by cyclic varia-
tion of the gate voltages that control the shape of an open
quantum dot. This motivated extensive theoretical re-
search in this topic [7,8]. Quantum spin pumping opens
the way for applications in spintronics. It is sometimes
suggested, but not explicitly shown, that quantum pump-
ing is related to Berry’s phase. As first emphasized by
Berry [9], discrete quantum systems have the counter-
intuitive property that when some of the parameters con-
trolling the system are slowly varied and brought back to
their initial values the quantum state of the system is
different to the initial state. That is, a quantum state may
acquire a geometric phase in addition to the normal
dynamic phase factor. Subsequent work showed that
non-Abelian gauge potentials can arise as a result of
degeneracies of energy levels of the system [10–12].
However, it is unlikely that adiabatic pumping, character-
istic of quantum open systems considered in this
Letter, results from Berry’s phase for closed discrete
systems [13].
TABLE I. Comparison of Berry’s phase and the q

Berry’s phase

Closed systems
Wave functions j �i

energy level with Mn degeneracies
iscrete spectrum (bound states)

lel transport due to adiabatic theorem
auge potential A��	 � h �

�j@	j �i
U�M� arising from different choices of bases G
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We present a systematic treatment of quantum adiabatic
pumping in open systems in terms of parallel transport
and gauge fields(both Abelian and non-Abelian) defined
on the system parameter space, which reveals a unifying
concept of geometric phases underlying scattering states.
We make explicit the similarities and differences with
Berry’s phase associated with cyclic variations of closed
quantum systems(both degenerate and nondegenerate)
(see Table I). In the scattering approach developed by
Brouwer [14], based on earlier work of Büttiker, Thomas,
and Prêtre [15], a compact formula was presented for the
pumped charge (current) in terms of the parametric de-
rivatives of the time-dependent scattering matrix sub-
jected to the modulating potential. We show that the
pumped charge, given by Brouwer’s formula [14], is
essentially the geometric phase associated with the U�1�
subgroup of the gauge group U�M� (M is the number of
channels in a certain lead), whereas the non-Abelian
sector SU�M� describes the adiabatic pumping associated
with the internal degrees of freedom such as spin.
Expressions are given for the gauge potentials associated
with tunneling from an STM (scanning tunneling micro-
scope) through a magnetic atom. We suggest an experi-
ment which can be used to illustrate the non-Abelian
character of the gauge field.

The quantum system.—Consider a mesoscopic system
with N leads, and for the nth lead there are Mn channels.
uantum scattering (pumping) geometric phase.

Scattering (pumping) geometric phase

Open systems
Row (column) vectors n� (n̂n�) of the S matrix

nth lead with Mn channels
Continuous spectrum (scattering states)

Parallel transport due to adiabatic scattering (pumping)
Gauge potentials A��	 � n�

� � @	n� and ÂA��	 � n̂n�
� � @	n̂n�

auge group U�M� arising from redistribution of the scattering
particles among different channels
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Our aim is to study quantum pumping by periodically
varying a set of the independent external parameters X 	
�X1; . . . ; X	; . . . ; Xp� slowly as a function of time t. In the
scattering approach, the S matrix is an N 
N matrix
with N the total number of channels, N �

PN
n�1Mn.

We define vectors n� 	 �S�1; . . . ; S�N � in terms of the
rows of the scattering matrix S�X�t�� associated with the
nth lead. The unitarity of the scattering matrix implies
that these vectors are orthonormal n�

� � n� � ���, �;
� � 1; . . . ;Mn. That is, this provides us with a smooth
set of (local frame) bases n��t�.

The gauge potential.—Assume that the parallel trans-
port law

��
� � d�� � 0 (1)

holds for (fiber) vectors ��, where d�� is the variation in
�� resulting from a variation dX in the external parame-
ters. If ���0� � n��0�, i.e., the initial vector describing
the scattering process in which the incident particle
comes from the �th channel in the nth lead, then the
degeneracy of the channels implies that the transported
vector ���t� must be a linear combination of all n��t�,
���t� �

P
�U���t�n��t�. Expressed another way, the

transported vector describes a combined scattering pro-
cess in which particles come from all channels in the nth
lead. Obviously, U�t� is unitary, i.e., U�t� 2 U�Mn�.
Physically, this means certain information about where
the incident particles come from is lost during parallel
transport, and is encoded in the unitary matrix U�t�.
Inserting into the parallel transport law in Eq. (1), we
have

�U�1dU��� � �n�
� � dn�: (2)

Since n� varies as the parameters X	 vary with time, we
can thus define the gauge potential A��	 	 n�

� � @	n�,
where @	 	 @=@X	 so that �U�1dU��� � �

P
	A��	dX

	:
This can be integrated in terms of exponential integrals.
For the period � of an adiabatic cycle, we have

U ��� � P exp

 
�
I X

	

A	dX
	

!
; (3)

where P denotes path ordering. Defining A 	
P
	A	dX

	,
one can see it is Lie algebra u�Mn� valued and thus anti-
Hermitian. A plays the role of a gauge potential, as in the
case of Berry’s phase [10] for closed (discrete) quantum
systems.

Gauge transformation.—The gauge group U�Mn�
originates from the unitary freedom in choosing local
bases n��� � 1; . . . ;Mn�, n0

��t� �
P
�!���t�n��t�. This

amounts to different choices of the scattering matrix:
S0�t� � ��t�S�t� with ��t� a diagonal block matrix, the
nth block of which is an Mn 
Mn unitary matrix !�t�.
Physically speaking, left multiplication of the scattering
matrix S�t� by ��t� just redistributes the scattering par-
ticles among different incoming channels associated with
a certain lead, which does not affect correlations at the
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scatterer and so the physics remains the same. The gauge
potential A�t� transforms as

A0�t� � d!!�1 �!A!�1: (4)

The gauge field strength defined by F 	 dA� A ^ A
transforms covariantly F0 � !F!�1. Therefore, a
U�Mn� 	 U�1� 
 SU�Mn� gauge field is defined on a
p-dimensional parameter space.

Justification of parallel transport.—Physically, by
‘‘adiabatic’’ we mean that the dwell time �p during which
particles scatter off the scatterer is much shorter than the
time period � � 2�=!a during which the system com-
pletes the adiabatic cycle. Here !a is a slow frequency
characterizing the adiabaticity and �p is related to (but
not determined alone by) Wigner time delay matrix
�w�s; E� 	 �iSy�s; E�@S�s; E�=@E with E being the en-
ergy of scattering particles and s being the so-called
epoch defined as s � !at [16]. Then the response to the
variation of the particle distribution in a certain channel
is only limited to channels associated with the same lead.
That means we ignore any responses which involve chan-
nels in different leads. Such a response can be treated as
dissipation, a correction to the adiabatic limit. Then,
the parallel transport law in Eq. (1) follows from the
parallel transport law for the wave function. The
latter is a solution of the time-dependent Schrödinger
equation i �h@tj��t�i � H�t�j��t�i. As is well known, the
Schrödinger equation induces a parallel transport law
Imh �t�j@t �t�i � 0 [17], with j �t�i 	 exp�i

R
h�t�dt� 


j��t�i, where h�t� � h�jHj�i=h�j�i. We can write the
wave function j �t�i as a linear combination of all scat-
tering states associated with a certain lead in the adia-
batic case. Formally, j �t�i �

P
�c�j ��t�i, with j ��t�i

denoting the scattering states in which the scattered par-
ticles come from channels associated with the nth lead,
and c� being arbitrary constants. Then we have
h ��t�j@t ��t�i � 0. The adiabatic assumption implies
that j ��t�i may be expanded in terms of instantaneous
asymptotic scattering states, j ��t�i �

P
�U���t�j 

S
��t�i,

with j S��t�i � j�iin �
P

N
��1 S���t�j�iout,� � 1; . . . ;Mn.

Here, j�iin and j�iout denote, respectively, the incoming
and outgoing scattering states, which are normalized such
that they carry a unit flux. Substituting into the parallel
transport law for j �i, one gets Eq. (2) which is equiva-
lent to the parallel transport law for row vectors of the
scattering matrix.

Quantum adiabatic pumping.—To establish the con-
nection between the geometric phase above and the
quantum pumping charge, we need to consider the
time-reversed scattering states j ̂ S��t�i � j�̂�iin �P

N
��1 S���t�j�̂�iout with ^ denoting the counterparts under

time reversal operation [18], which constitute a solution of
the Schrödinger equation for the time-reversed Hamil-
tonian ĤH at any given (frozen) time at the epoch scale
[16]. This gives rise to another gauge potential ÂA��	 	
n̂n�
� � @	n̂n� with n̂n� 	 �S1�; . . . ; SN ��, i.e., the column
186803-2
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vectors of the scattering matrix S�t�. In this case, the
gauge group arises from redistribution of scattering par-
ticles among different outgoing channels. If n̂n0

��t� �P
�!̂!��n̂n��t�, then the gauge transformation takes ÂA0�t� �

d!̂!!̂!�1 � !̂! ÂA !̂!�1. The gauge fields A and ÂA are con-
nected via time reversal operation. If we identify the
emissivity into the �th channel in the nth lead as
Im�ÂA��=2�� [15], then we immediately reproduce
Brouwer’s formula [14] describing charge pumping,
which turns out to be associated with the Abelian sub-
group U�1�,

Q �
e
2�

Im
I

TrÂA; (5)

with Q being the charge transferred into the nth lead
during one cycle. That is, the charge transferred during
adiabatic pumping is essentially the geometric phase
associated with the charge sector U�1�. This also explains
why Planck’s constant �h does not occur in the adiabatic
quantum pumped charge (current), a peculiar feature
different from the Landauer-Büttiker conductance. How-
ever, as is well known, the geometric phase is determined
only up to a multiple of 2�. This concerns global geo-
metric properties, i.e., the winding number of the overall
phase of the gauge transformation in Eq. (4), N 	
�1=2�i�

H
Tr�d!̂!!̂!�1�. The requirement that all physical

observables be invariant under the gauge transformation
leads us to the conclusion that O�Q� � O�Q� eN�, with
O denoting any observable. This result has been noticed
by Makhlin and Mirlin [8], without proper justification,
for the counting statistics in quantum charge pumps (see
also, Ref. [7]).

To see the effects caused by non-Abelian gauge poten-
tials, we need to consider gauge invariant quantities.
Besides TrÛU���, we see that both the determinant and
eigenvalues of ÛU��� are gauge invariant. Actually, there
areMn independent gauge invariant quantities such as the
eigenvalues exp�i%��. On the other hand, there are Mn
independent simultaneous observables such as the pump-
ing currents I� flowing into the �th channel, which must
be gauge invariant. Therefore, one may expect that the
pumping currents I� are some functions of %1; . . . ; %Mn

.
Because our argument relies only on gauge invariance
and does not depend on any details of the system, such
functions must be model independent. Guided by the
results for the so-called ‘‘Abelianized’’ non-Abelian
gauge potentials, i.e., the gauge potentials which turn
out to be diagonal in a certain gauge, we have

I� � �
1

2��
%�: (6)

Especially, the charge pumping current Ic corresponding
to the Abelian sector U�1� is Ic	

P
�I����1=2���
P

�%�. One may verify that this is consistent with Eq. (5)
since _QQ�t� � eIc and ddetÛU�t���TrÂA�t�detÛU�t�.
Alternatively, Q���e=2��ImlndetÛU���. Similarly, we
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may define generalized ‘‘spin’’ pumping currents associ-
ated with the Cartan subalgebra of the non-Abelian sec-
tor SU�Mn�. The simplest non-Abelian case U�2� is
relevant to the charge and spin pumping.

Tunneling through a single magnetic spin.—Consider
the Hamiltonian describing two leads coupled to a single
site, the spin of which has an exchange interaction J with
a magnetic spin [19],

H �
X

k2L;R;+

,k+c
y
k+ck+ � J

X
+;+0

dy+�++0d+0

�
X

k2L;R;+;+0

�Vk+;+0cyk+d+0 � H:c:�: (7)

Here cyk+ and ck+ are, respectively, the creation and de-
struction operators of an electron with momentum k and
spin + in either the left (L) or the right (R) lead, and dy+
and d+ are the counterparts of the single electron with
spin + at the spin site. The quantity ,k+ are the single
particle energies of conduction electrons in the two leads,
which we will assume ,k+ � vF�jkj � kF� with the con-
vention that vF � 1, and the momentum is measured
from the Fermi surface for electrons in leads. The elec-
trons on the spin site are connected to those in the two
leads with the tunneling matrix elements Vk+;+0 . For sim-
plicity, we assume symmetric tunneling barriers between
the local spin and the leads, and keep only the spin-
conserved coupling; viz. Vk++0 � V for + � +0 and 0
for + � +0. The entries of the coupling matrix � take
the form ��� � ���� � cos/ and ��� � ��

�� �
sin/ exp��i �. For this model, in each lead, there are
two channels corresponding to up and down spin.

The model is exactly soluble as far as the scattering
matrix is concerned. Our general formalism leads us to
the non-Abelian gauge potential,

ÂA � ÂA/d/� ÂA d ; (8)

where ÂA/� � 	
P

3
j�1 ÂA

j
/� �+

j=4 with ÂA1
/� i�acos/cos �

bsin �, ÂA2
/ � i�a cos/ sin � b cos �, ÂA3

/ � �ia sin/,
and ÂA1

 � �i�a sin/ sin � b sin/ cos/ cos �, ÂA2
 �

i�a sin/ cos � b sin/ cos/ sin �, ÂA3
 � �ibsin2/. Here

a � sin��� � ���, b � 1� cos��� � ���, and the phase
shifts are �� � �2tan�1�#=�k� J�� with the tunneling
rate # 	 V2.

The gauge field strength F̂F then takes the form F̂F �
�i�1� cos��� � ���� ~nn � ~++d�=4. Here d� � sin/d/^
d is the invariant area element and ~nn � �sin/ cos ;
sin/ sin ; cos/� is the direction of the magnetic spin.
Obviously, this is just a simple rotation of the standard
form F̂F � �i��2 � 1�+3d�=2. Up to a gauge transfor-
mation, this is the same non-Abelian gauge potential,
found by Moody et al. [11] for a diatomic molecule.
This is consistent with a theorem, proved in [20], stating
that the rotationally invariant connection on the sphere is
essentially unique. To establish the relation between� and
cos��� � ���, we need to calculate the gauge invariant
186803-3
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FIG. 1 (color). The dependence of the spin pumping current Is
(times �, the period of cyclic variation) on system parameters
for two leads connected to a single magnetic spin whose
direction is slowly varied around the path shown on the right.
(a) Left: Schematic of the magnetic spin coupled to left (L) and
right (R) leads. The magnetic spin S precesses around the
direction of the magnetic field B. Right: An equivalent scan-
ning tunneling microscope experimental setup. (b) The pump-
ing cycle on the parameter �/; �-sphere is taken to be
C�/1;  1; /2;  2� � ��=8; 0; �=2; ��.
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quantity TrF̂F ^ �F̂F, with �F̂F being the dual of F̂F. Then we
have �2 � �3� cos��� � ����=2. When J � 0, i.e., in
the absence of the direct exchange interaction between
electrons and the local spin, the gauge field is a pure gauge
because F̂F � 0. Since the Pauli matrices are traceless, we
have TrÂA � 0, meaning that charge pumping is absent in
the model under consideration. That implies %� � �%�.
Therefore, the spin pumping current defined by Is � I� �
I� becomes Is � �%�=����.

One can compute a phase factor ÛUSR which is obtained
from the time-reversed counterpart of Eq. (3) for a
‘‘spherical rectangle (SR).’’ From 1

2 TrÛUSR � cos���Is�,
the spin pumping current Is may be extracted and is
shown in Fig. 1 as a function of system parameters for a
path C. The spin pumping current takes its maximum
value around the resonant scattering lines k � �J.

Possible experiments.—A scanning tunneling micro-
scope (STM) has been used to detect a quantum mirage
around a single magnetic cobalt atom placed on a non-
magnetic metallic copper surface [21]. Electron spin reso-
nance (ESR)-STM experiments [22] have advanced to the
point that they have spatial resolution at the level of a few
spins [23]. The STM setup as shown in Fig. 1(a) should
make it possible to observe gauge invariant spin pumping
via a single magnetic atom on the surface of the substrate.
To measure the spin pumping current Is, one could replace
one of the leads by a ferromagnetic one. The spin pumping
current can then be measured via the charge pumping
currents.
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66, 035306 (2002).

[16] J. E. Avron et al., J. Math. Phys. (N.Y.) 43, 3415 (2002).
[17] B. Simon, Phys. Rev. Lett. 51, 2167 (1983); Y. Aharonov

and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987);
J. Samuel and R. Bhandari, ibid. 60, 2339 (1998).

[18] The time reversal operation here is carried out for the
Hamiltonian at the frozen time, which may be or may not
be broken, depending on the Hamiltonian concerned.
However, there is another time reversal operation at large
time scale, which is always broken during pumping.

[19] J. X. Zhu and A.V. Balatsky, Phys. Rev. Lett. 89, 286802
(2002).

[20] C. H. Gu, Phys. Rep. 80, 251 (1981).
[21] H. C. Manoharan, C. P. Lutz, and D. M. Eigler, Nature

(London) 403, 512 (2000).
[22] M. Farle, Rep. Prog. Phys. 61, 755 (1998); M. Bode,

M. Getzlaff, and R. Wiesendanger, Phys. Rev. Lett. 81,
4256 (1998); S. Heinze et al., Science 288, 1805 (2000).

[23] D. Ralph, Science 291, 999 (2001).
186803-4


