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Electron-Phonon Coupling and its Evidence in the Photoemission Spectra of Lead
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We present a detailed study of the influence of strong electron-phonon coupling on the photoemission
spectra of lead. Representing the strong-coupling regime of superconductivity, the spectra of lead show
characteristic features that demonstrate the correspondence of physical properties in the normal and the
superconducting state, as predicted by the Eliashberg theory. These features appear on an energy scale
of a few meV and are accessible for photoemission only by using modern spectrometers with high-

resolution in energy and angle.
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A striking evidence of electron-phonon interaction in
solids is the existence of superconductivity. Bardeen,
Cooper, and Schrieffer showed [1] that even a weak
electron-phonon coupling is able to condense two elec-
trons to a so-called Cooper pair, which is the basic
prerequisite of the superconducting ground state and the
key feature of the BCS model. The BCS theory describes
successfully the superconducting properties of many
solids, e.g., Al, V, or V3Si, where the electron-phonon
coupling is sufficiently weak. Other conventional super-
conductors, e.g., Pb, Hg, or Nb;Ge, show significant quan-
titative and qualitative deviations from the predictions of
the BCS model [2]. These systems are usually classified as
strong-coupling superconductors.

The theoretical approach for the explanation of strong-
coupling superconductors is based on the Eliashberg
equations, with the coupling function @*F as the central
property [3]. This so-called Eliashberg function can be
calculated, e.g., by first principles methods from the elec-
tronic wave functions, the phonon density of states, and
the electron-phonon coupling between two Bloch states.
However, o’F is a much more universal quantity and
determines also the influence of the electron-phonon in-
teraction on the normal state properties, e.g., the electrical
resistivity, the electronic heat capacity, and—as a spec-
troscopic feature—the electron-phonon contribution
[ei-pn to the intrinsic quasiparticle linewidth, which can
be determined, e.g., by photoemission spectroscopy. In
the Green’s function method, the influence of electron-
phonon interaction is expressed as a contribution to the
complex self-energy of the conduction electrons Ee]_ph,
which can be calculated from the Eliashberg function
a’F [4]. The real part describes the induced band renor-
malization, where the imaginary part gives the quasipar-
ticle linewidth, equivalent to the reciprocal hole lifetime
7. In particular, at very small energies (i.e., close to the
Fermi level), the real part of Eel_ph is linear in energy, and
A= —8ReZ  p(w)/dw at @ = 0 is usually called the
mass enhancement factor. In addition, A defines the slope
of the temperature dependence of the quasiparticle line-
width Tgpp =2Im 2, =~ 27AkgT for temperatures
above the Debye temperature © .
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Photoemission spectroscopy (PES) is a versatile
experimental method to study the electronic struc-
ture of solids and has been applied to many high-T,
materials [5,6] and conventional superconductors [7-11].
Electron-phonon coupling in metallic systems has been
studied in detail by PES on low-dimensional electronic
states at surfaces, e.g., Shockley states [12-18] or
quantum-well states [19,20]. PES investigations on
electron-phonon effects in three-dimensional solids,
however, are rare. One particularly interesting three-
dimensional model system is Pb, which among the con-
ventional superconductors has quite unconventional
physical properties.

In the case of Pb, the two most relevant energy scales
on which the electron-phonon features appear in the
spectra, the Debye energy fiwp = kz®, and the gap
width A, at T = 0, define prerequisites that can be met
by PES experiments today (hwp = 7.6 meV, Ay =
1.4 meV). The instrumental resolution must be at least
of the same order of magnitude to give usable spectral
information on these features, ie., AE < 3 meV.
Furthermore, if one wants to measure the band renormal-
ization on single-crystalline samples, the angular resolu-
tion must be sufficient to resolve the band dispersion of
states close to the Fermi level. For a few years, photo-
electron spectrometers have fulfilled these requirements
and PES has become a unique method yielding access to
electron-phonon features in both the density of states and
the k-resolved electronic band structure.

The photoemission data presented here have been mea-
sured using He I, radiation from a monochromatized
helium discharge lamp (hv = 21.22 eV) with an energy
resolution of =< 3 meV. The angular resolution was typi-
cally = 0.3° and the sample temperature could be varied
from room temperature down to about 4.5 K (see Ref.
[9,21] for details of the experimental setup). The samples
were polycrystalline and single-crystalline pellets (Sur-
face Preparation Laboratory, Netherlands), thermally
connected to the sample holder by soldered indium.
Clean single-crystalline surfaces were prepared in situ
by careful Ar sputtering and subsequent annealing
at < 150°C.
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On such a surface, one is able to investigate the elec-
tronic band structure of states close to the Fermi level by
angular resolved PES (ARUPS). The inset in the upper
panel of Fig. 1 gives a volume band dispersion E; close to
the Fermi level on a Pb(110) surface in the normal state
(T = 8 K). With He I, this band, forming the locally
tubular Fermi surface of Pb, can be reached slightly off
the high-symmetry direction T'K [22], or, more precisely,
atk, = 0.82 A~" along TK and &, = 0.11 A™' parallel
to ['X. The data points (circles) were determined from the
position of the peak maxima in the angular distribution
curves (ADC) at the energies close to the Fermi level Ef
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FIG. 1. Real and imaginary parts of the electron-phonon

self-energy 3, experimental data (circles), and calculated
from Ref. [4] (full lines). Upper inset: Measured band disper-
sion close to E in the normal phase (7' = 8 K); the dashed line
gives the result of a linear fit to the data points at higher
energies (Ep > 20 meV). The experimental data points have
been determined from the maximum position of a Lorentzian
fit to the angular distribution curves (ADC) (see lower inset
with ADC at Eg = 10.5 meV).
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(see lower inset). At higher energies, i.e., significantly
higher than the Debye energy fiwp = 7.6 meV, the dis-
persion can be approximated quite well by a linear func-
tion of the momentum k, representing the dispersion €,
with no renormalization. However, below E = 12 meV,
the band shows the well-known correction due to elec-
tron-phonon interaction, which is defined by the real part
of the self-energy Re 2(E;) = E; — €;. The upper panel
shows the experimental result (T = 8 K) for the deviation
from the linear dispersion compared to the calculated
Re3, from Ref. [4] at T = 11 K. The comparison shows
a good qualitative agreement; in particular, the position
of the maximum at = 7 meV and the slope at Er (given
by the coupling constant A = 1.55) are the same for
experiment and theory, within the experimental uncer-
tainties. The difference in maximum height can be ex-
plained by the finite experimental resolution. Until now,
such a renormalized quasiparticle dispersion has been
observed only for low-dimensional systems, e.g., the
Shockley state on Mo(110) [15] or high-T. superconduc-
tors [5,6].

By an analysis of the ADC linewidth as a function of
the binding energy, one can extract the energy depen-
dence of the imaginary part Im % of the self-energy (see,
e.g., Refs. [15,18]). The lower panel of Fig. 1 shows the
experimental energy dependence in comparison to
Im 2(E,) from Ref. [4]. Since Pb is a three-dimensional
system, the contribution of the final state to the total
linewidth cannot be neglected [23]. This additional con-
tribution is not related to electron-phonon interaction and
therefore does not show an energy or temperature depen-
dence in the investigated range. Thus, it is reasonable to
simply shift the theoretical result by 82 meV to match the
photoemission data. Apart from this offset and experi-
mental limitations, the agreement between experimental
result and theory is good: Below the maximum phonon
energy fwn.« = 10 meV (see inset of Fig. 2) there is a
continuous increase of the linewidth up to a net change of
=~ 13 meV. As known from the Debye model, above
hw = 10 meV the electron-phonon contribution to the
linewidth remains constant.

The photoemission linewidth is also characteristically
dependent on the temperature. Figure 2 shows the experi-
mental linewidth from ADCs for E = hwp (circles); the
dashed line and the solid line give the theoretical results
at Er and Eg = hw,,,y, respectively. Obviously, the cal-
culated temperature dependence describes the experiment
quite well. For the whole investigated temperature range,
the theoretical curve lies within the error bars of the
experimental values and, in particular, for high tempera-
tures the experimental linewidth follows the predicted
linear behavior given by I’y = 27wAkgT, again with
A = 1.55. This result confirms that the contribution of
the final state to the total photoemission linewidth does
not considerably depend on the temperature.

Obviously, there is clear evidence for the strong elec-
tron-phonon interaction in the photoemission spectra of
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FIG. 2. Temperature dependence of the lifetime width I" for
energies E = hiwp (circles). The dashed line and the solid
line represent the calculated electron-phonon contribution at
Er=0and E = hw,,, = 12 meV, shifted vertically to match
the experimental data. The inset shows a>F(w) as used for the
calculation (from Ref. [24]).

Pb in the normal state. In addition, there are characteristic
spectral features in the superconducting state of Pb: a
peak-and-dip structure, that has been experimentally
observed first by tunneling techniques [25] and repro-
duced recently in photoemission data [8]. Theoretically,
the density of states of a strongly coupled superconductor
can be fully described by an energy and temperature
dependent, complex gap function A(E, T) given by the
Eliashberg theory [26,27]. The imaginary part of A is the
consequence of the damping of the quasiparticle excita-
tions caused by the electron-phonon interaction. With this
gap function, the spectral density of states of a strongly
coupled superconductor is described by N(E, T)/N, =
Re{E//E* — A%(E, T)}, giving as a special case the dip-
less BCS density of states when A is chosen real and
constant in E.

A theoretical gap function for Pb at finite temperatures
can be found in Ref. [28], which gives the energy depen-
dence for A(E, T) explicitly for two temperatures 7; = 0
and T, = 0.98T,. To obtain the gap function at the tem-
perature of the present experiment (T = 4.4 K), we sim-
ply interpolated between these two pairs of curves
AET)=[1—-a(D)]AE T,) + a(T)A(E, T,), consider-
ing the temperature dependence of the BCS gap [29].

We model the photoemission spectrum by convoluting
the result with a Gaussian to describe the broadening from
the finite experimental resolution. The interpolated gap

186406-3

function and the resulting spectrum for 7 = 4.4 K are
displayed in Fig. 3.

Figure 4 shows a comparison of the model function
with the experimental data at T = 4.4 K, normalized to
unity at £ = 27 meV, where the spectrum becomes flat;
the inset shows a blowup of the range of the dip. The solid
line represents the model function from Fig. 3, the bars at
the x axis represent the difference to the normalized
experimental spectrum. The agreement between experi-
ment and model is striking. Without using any free fit
parameter, all important features—the position of the
gap edge, the intensity ratio between peak and dip, and
the spectral shape in the displayed energy range—are
perfectly described by the model function.

The most important feature of the spectrum in Fig. 4 is
the drop of the intensity around 11 meV below unity,
which is also lower than the BCS intensity and the normal
state density of states (DOS) in this energy range.
Choosing a simple Einstein-like model phonon at energy
fiwg, it was demonstrated [26] that the dip in the DOS
appears approximately at a binding energy slightly be-
yond fiwg + Ay, corresponding to the maximum position
in Im A. This is in accordance with our observation where
the dip appears at an energy slightly higher than o, +
Ay = 9 meV. In the BCS model, the superconducting gap
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FIG. 3. Lower panel: Real and imaginary part of the gap
function, interpolated at T = 4.4 K from the calculated gap
functions at T = 0 and 0.98T, given in Ref. [28]. Upper panel:
Resulting spectrum, raw normalized density of states N/N
(solid line) and broadened by a convolution with a Gaussian
(FWHM AE = 2.8 meV) to simulate the resolution function.
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FIG. 4. Comparison of the modeled function from Fig 3
(solid line) with the experimental data (circles). The black
bars at the x axis indicate the difference between experiment
and theory. The inset shows a blowup of the peak and the dip
structure.

width Ay at T = 0 is related to the transition temperature
T. by the dimensionless parameter 2A,/kpT,. = 3.50.
This parameter amounts to 4.497 for Pb (T, = 7.19 K),
much larger than the BCS value; Al (7T, = 1.18 K) as the
prototype BCS material has 3.535 [2]. This means the gap
width of Pb is larger than for a BCS-like superconductor
with the same T,. As a consequence, the characteristic
weak photoemission structure from the thermally occu-
pied singularity above Er, which can be observed, e.g., at
T = 0.6T,. for V3Si [9], is not resolvable because the
Fermi-Dirac distribution suppresses the spectral intensity
at energies farther away from the Fermi level.

In conclusion, the high-resolution photoemission data
presented in this paper clearly demonstrate the influence
of the strong electron-phonon coupling on the electronic
structure of lead in both the normal and superconducting
state. The experimental superconducting density of states,
the renormalized band dispersion, the energy, and the
temperature dependence of the quasiparticle linewidth
are in very good agreement with theoretical calculations
based on the Eliashberg theory and represent consis-
tently—and even quantitatively—the electron-phonon
corrections in spectroscopic data. We hope that these
results may also help to reveal the driving mechanisms
behind the unconventional superconductors, such as

186406-4

high-T, systems, superconducting heavy-fermion com-
pounds, and even superconducting organic materials.
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