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The formation of a finite-density polaronic state is analyzed in the context of the Holstein model
using the dynamical mean-field theory. The spinless and spinful fermion cases are compared to
disentangle the polaron crossover from the bipolaron formation. The exact solution of dynamical mean-
field theory is compared with weak-coupling perturbation theory, noncrossing (Migdal), and vertex
correction approximations. We show that polaron formation is not associated with a metal-insulator
transition, which is instead due to bipolaron formation.
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electron correlation forbids bipolaron formation, while in
the manganites, the double-exchange mechanism favors

symmetric case the ground state is always ordered, the
homogeneous solution may become representative of the
Recent experiments strongly suggest that the electron-
phonon (e-ph) interaction is relevant in many materials,
ranging from high Tc superconducting cuprates [1], to
colossal magnetoresistance manganites [2], from the ful-
lerenes [3] to magnesium diboride [4]. While the specific
role of the e-ph interaction is certainly very different
from compound to compound, the properties of these
materials are hardly explained in terms of standard ap-
proaches to the e-ph problem, like the Migdal-Eliashberg
theory, and pose a serious challenge to theories.

More specifically, polaronic features have been ob-
served in lightly doped cuprates [5], in the manganites
[2], up to some indication in the fullerenes [6]. A small
polaron is a carrier so tightly interacting with the lattice
that its effective mass is strongly enhanced therefore
reducing its mobility[7]. The single polaron problem has
been extensively studied allowing one to understand in
detail the polaron physics [8,9]. Nevertheless, the experi-
mental findings of polaronic effects obviously deal with
finite densities of carriers, and prompt for an analogous
understanding of the finite-density polaron problem,
where the polarons are able to interact and to change
drastically the phonon properties. In this regard, it is
important to stress the distinction between polaronic
and bipolaronic states. If repulsion between the electrons
is neglected, two polarons (with opposite spin) tend in
fact to bind, giving rise to a (local) pair, which is called
bipolaron. The bipolarons in turn may undergo a super-
conducting transition of the Bose-Einstein type [10]. If
superconductivity is not allowed, bipolarons give rise to
an insulating state of localized pairs [11,12] which may
eventually condense in a charge-ordered state [13]. In
some important compounds bipolaronic states are indeed
unlikely formed. In cuprates and fullerenes, the strong
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ferromagnetic states at low temperature, in which no
bipolaron can be formed.

In order to disentangle the polaron effects from bipo-
laron formation, we compare the spinless fermion case, in
which bipolarons are forbidden by the Pauli principle,
with the spinful case, which has been extensively studied
in the recent past [14–18]. To be more explicit, we show
that the polaron crossover at finite density is not by itself a
metal-insulator transition (MIT), and insulating behavior
can be associated only with localized bipolarons. This
effect shows up in the nonvanishing of both the quasi-
particle renormalization factor and the renormalized pho-
non frequency in the spinless case. In the spinful case the
quasiparticle weight vanishes at some definite coupling
while the renormalized phonon frequency remains finite.

We consider the Holstein molecular crystal model, in
which tight-binding electrons interact with local modes
of constant frequency. The Hamiltonian is

H � �t
X

hi;ji;�

cyi;�cj;� � H:c:� g
X

i

ni�ai � ayi �

�!0

X

i

ayi ai; (1)

where ci;� (cyi;�) and ai (ayi ) are destruction (creation)
operators for fermions and for phonons of frequency
!0, ni is the electron density, t the hopping amplitude,
and g is an e-ph coupling. The density is fixed to n � 0:5
(n � 1) in the spinless (spinful) system, which corre-
sponds to the particle-hole symmetric half-filled case.
In analogy with the studies of the Mott transition in the
Hubbard model, in which antiferromagnetism is ne-
glected [19], we restrict ourselves to the state with no
charge order [12]. Despite the fact that in the particle-hole
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FIG. 1. The NCA [(a)] and the VCA [(a) � (b)] diagrams
for electron (upper graphs) and phonon (lower graphs) self-
energies.Wavy lines are phonon propagators while straight lines
are electron propagators. Second order perturbation theory is
obtained replacing internal lines with free propagators.

P H Y S I C A L R E V I E W L E T T E R S week ending
31 OCTOBER 2003VOLUME 91, NUMBER 18
ground state whenever charge ordering is spoiled by some
frustration effect such as a next-nearest-neighbor hop-
ping. Moreover, this study allows one to characterize how
strong e-ph interaction may lead to the destruction of the
metallic state (just like electron correlation leads to the
Mott state). The adiabatic ratio � � !0=t has been shown
to be an important parameter for the single polaron
formation. In the adiabatic regime � < 1, the polaron
crossover occurs when � � g2=!0t ’ 1, while in the
antiadiabatic regime � > 1, the condition is instead
�g=!0�

2 ’ 1 [8,9].
We solve the model using the dynamical mean-field

theory (DMFT), a nonperturbative approach which be-
comes exact in the limit of infinite dimensions [19].
We notice that in such a limit the spinless fermion case
does not coincide with the infinite correlation limit.
Nonetheless, this system represents an instructive play-
ground where polaronic effects can be observed without
too many competing phases. In DMFT, the lattice model
is mapped onto an impurity problem subject to a self-
consistency condition, which contains the information
about the lattice. In our case the impurity model is

H � �
X

k;�

Vkc
y
k;�f� � H:c:�

X

k;�

Ekc
y
k;�ck;�

� g�a� ay�
X

�

fy�f� �!0a
ya; (2)

where the phonons live only on the impurity (f) site, Ek
and Vk are the energy levels and the hybridization pa-
rameters of the conduction bath. For the z coordination
Bethe lattice of half bandwidth D � 2t

���
z

p
� 1 the self-

consistency equation in the z ! 1 limit is

D2

4
G�i!n� �

X

k

V2
k

i!n � Ek
: (3)

In this work we use exact diagonalization (ED) to solve
the impurity model (2) [20]. This method requires one to
restrict the sum in Eqs. (2) and (3) to a finite small
number of levels Ns � 1. The discretized model can
then be solved at T � 0 using the Lanczos method. The
convergence is exponential in Ns, and a few levels are
enough to give converged results. Results are obtained
taking typically Ns � 10, having checked that no signifi-
cant change occurs for larger Ns [21]. Error bars can be
evaluated by linearly extrapolating (in 1=Ns) to Ns ! 1
and are of the size of symbols in the figures. We compare
the ED solution of DMFT, with two approximate
schemes: a self-consistent noncrossing approximation
(NCA) [11,15] [Fig. 1(a)] and a self-consistent approxi-
mation including the first vertex correction beyond NCA
(VCA) [15] Figs. 1(a) and 1(b)]. Notice that in the stan-
dard Migdal-Eliashberg approximation the phonon spec-
trum is not self-consistently evaluated, but it is taken
‘‘from experiments,’’ while in our NCA and VCA the
phonon self-energy is self-consistently evaluated (on the
imaginary frequency axis) through an iterative scheme,
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just like the electron self-energy. Actually, to allow for a
safer truncation on the frequency axis, the quantity which
is iteratively determined is not the full self-energy, but the
difference between this quantity and the result from sec-
ond order perturbation theory. Zero temperature results
are obtained by lowering the temperature until the physi-
cally relevant quantities converge [consistently increasing
the number of Matsubara frequencies Nmax � 6=�2T��].
We checked the convergence to T � 0 by monitoring
the quasiparticle spectral weight Z defined as Z�1 � 1�

��i!n�1� � ��i!n�0�=2�T� where !n � �2n� 1��T.
The vanishing of Z is used within DMFT to characterize
the Mott MIT in the repulsive [19] and the pairing tran-
sition in the attractive Hubbard models [22]. A vanishing
Z has been found also in the spinful Holstein model [12].
The convergence to T � 0 turns out to depend on both �
(as detailed below, we study � � 0:1 and � � 1 as repre-
sentative of adiabatic and nonadiabatic regimes, respec-
tively) and �. Within VCA T=t � 3� 10�3 is sufficient to
get results representative of the ground state for weak/
intermediate coupling. In the spinful case for � � 0:1,
T � 10�3 is instead necessary since the polaron cross-
over is approached for smaller coupling (see below).
Within NCA it is possible to span the strong-coupling
regime, making an extrapolation to T � 0 necessary in
the adiabatic regime for � > 1 (� > 0:5) in the spinless
(spinful) case. In the nonadiabatic regime the extrapola-
tion is required for � > 1:6 (� > 1:2) in the spinless
(spinful) case.

We first discuss the spinless case. Exact DMFT results
for Z are shown in Fig. 2. The logarithmic scale on the y
axis evidences that in both cases Z, even if exponentially
reduced, never vanishes by increasing �, indicating that
no MIT is taking place. It is important to observe that Z
increases when the truncation error is reduced increasing
Ns. The comparison with NCA and VCA shows non-
trivial tendencies. Both approximations are accurate at
weak coupling, but VCA remains closer to ED for rela-
tively large coupling even in the adiabatic regime, where
the Migdal approximation would be expected to hold.
Quite surprisingly even in the nonadiabatic regime VCA
improves NCA only at weak coupling. At strong coupling
NCA predicts a polaronic crossover, in qualitative agree-
ment with exact results, even if, for � � 1, the crossover
186405-2
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FIG. 3. Spinless fermions. The renormalized phonon fre-
quency �=!0. Notations are the same as in Fig. 2
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FIG. 4. Spinful fermions. Z and �=!0 (inset) for � � 0:1 as
a function of �. The arrow marks the MIT for � � 0 [16].
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FIG. 2. Spinless fermions. The quasiparticle weight Z within
second order perturbation theory (2PT), NCA, VCA, and ED
for � � 0:1 (upper panel) and � � 1 (lower panel) as a function
of �. The arrow in the upper panel marks the MIT for � � 0
[16]. The inset shows ED and NCA in a larger range of � for
� � 1 to make the polaron crossover visible.
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coupling is strongly underestimated by NCA. On the other
hand, VCA drastically diverges from ED and gives un-
physical negative mass renormalization at strong coupling
both for � � 0:1 and 1, in agreement with the divergence
of vertex corrections predicted in Ref. [11]. The coupling
at which the approximate methods deviate from exact
results decreases with increasing �, and it is unrelated
to the polaron crossover coupling which is instead larger
for � � 1, as shown in the inset of Fig. 1, and in agree-
ment with the single polaron case [8,9].

An important difference between the finite-density
situation and the single polaron problem is that many
electrons are able to renormalize the phonon prop-
erties. The renormalized phonon frequency can be
obtained from the phonon propagator D�i!n� �R�
0 d!e

i!n!hT
a0�!� � ay0 �!���a0 � ay0 �i, as ��=!0�
2 �

�2=!0D�i!n � 0��1. As shown in Fig. 3, �=!0 never
vanishes as a function of the coupling, but rather expo-
nentially decreases. The way NCA and VCA results for �
compare with ED is analogous to the results for Z. In the
adiabatic regime NCA strongly overestimates �=!0

around the polaron crossover. In the nonadiabatic regime
NCA again predicts a phonon softening which does not
actually occur at such small values of the coupling. In the
same regime VCA improves the NCA result only at weak
coupling and gives a phonon hardening at strong cou-
pling. It is worth noting that for both Z and � the
coupling at which NCA and VCA deviate from ED is
lower in the nonadiabatic than in the adiabatic regime.
This ‘‘nonuniform’’ behavior is not present for a single
186405-3
polaron [9] and represents a first peculiarity of the finite-
density case.

Now we compare our findings for spinless fermions
with the spinful fermion case. In the adiabatic regime a
MIT has been found around � ’ �MIT ’ 0:68 [17], close
to the value (� � 0:664) at which the density of state at
Fermi energy vanishes in the adiabatic limit (� � 0) [16].
This transition has a precursor in the phonon softening
[12] but, contrary to the spinless case, the spin degrees
of freedom prevent electron coherent hopping at strong
coupling through a Kondo-like mechanism [23]. A MIT
has been claimed to occur also within NCA [11].

In Fig. 4 we show results for � � 0:1. The logarithmic
plot clearly shows that Z vanishes faster than the expo-
nential, signaling a MIT at � ’ 0:76, in agreement with
Ref. [12]. Contrary to the spinless case, here Z decreases
186405-3
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FIG. 5. Spinful fermions. Z and �=!0 (inset) for � � 1:0 as a
function of the coupling.
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by increasing Ns. On the other hand, �=!0 decreases
with � as in the spinless case, suggesting that, even if
strongly softened, the phonon mode never becomes com-
pletely soft. This behavior is more evident for larger
phonon frequency � � 1, as reported in Fig. 5. Also in
this case Z vanishes much faster than the exponential at
� � 1:44, where the MIT takes place, while the phonon
renormalization is much less effective and leads to quite a
large value of �=!0 even at the MIT point (see inset).

The comparison with approximate schemes qualita-
tively resembles the spinless case. NCA underestimates
Z for � below the MIT, but it gives a finite weight also
above the exact MIT point. Our extrapolation to T � 0
from finite temperatures does not allow us to definitively
rule out the existence of a MIT within NCA even if, in
contrast with a claim in Ref. [11], Z seems to decrease
exponentially with � within this approximation [24].
Again VCA gives better results than NCA even in the
adiabatic regime up to intermediate coupling � ’ 0:55,
but it becomes completely unreliable at strong coupling.

We have studied the formation of a polaronic state in
the Holstein model at half filling within DMFT. For
spinless fermions, a continuous crossover leads to a polar-
onic state by increasing the coupling constant. Despite
the electron effective mass becoming exponentially large
in the strong-coupling regime, the ground state is always
metallic. The crossover is more abrupt in the adiabatic
case. In the spinful case, the polarons can bind to form
bipolarons, leading to a real MIT. The phonon renormal-
ization is much stronger in the adiabatic regime than in
the nonadiabatic case, but the phonons do not become
completely soft at the MIT. Approximate treatments
(NCA and VCA) strongly deviate from exact DMFT
above a coupling which diminishes with increasing
!0=t. At weak coupling VCA correctly reproduces the
qualitative trends of exact results and improves on NCA.
186405-4
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