
P H Y S I C A L R E V I E W L E T T E R S week ending
31 OCTOBER 2003VOLUME 91, NUMBER 18
Methods of Calculation of a Friction Coefficient: Application to Nanotubes
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In this Letter we develop theoretical and numerical methods to calculate the dynamic friction
coefficient. The theoretical method is based on an adiabatic approximation which allows us to express
the dynamic friction coefficient in terms of the time integral of the autocorrelation function of the force
between both sliding objects. The motion of the objects and the autocorrelation function can be
numerically calculated by molecular-dynamics simulations. We have successfully applied these methods
to the evaluation of the dynamic friction coefficient of the relative motion of two concentric carbon
nanotubes. The dynamic friction coefficient is shown to increase with the temperature.
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simulation and by the autocorrelation-function method
developed by Jarzynski, Berry, and Robbins [3,4]. FIG. 1. Sliding nanotubes.
Thanks to recent developments in nanotechnology, the
hope is high to build mechanical devices on the scale of
the nanometer. For this purpose, it is important to deter-
mine the mechanical properties and, especially, the fric-
tion forces in such nanodevices. In this Letter, we are
going to focus on systems of carbon nanotubes. Our
particular interest is for a system that Cumings and
Zettl [1] observed experimentally with a TEM. They fixed
an edge of a multiwalled nanotube to a surface and
opened the other edge, they then extracted inner layers
from the core for several nanometers and released them.
They observed a full retraction of the inner layers and
furthermore, they could conclude that the multiwalled
nanotubes are self-cleaning since amorphous carbon
due to the opening of the edge is inside the tube and
also do not have any wear, structural change, or fatigue
after several extraction and retraction processes. This
experiment suggests to us that the multiwalled nanotubes
can be promising systems for future nanometric mechani-
cal parts such as springs, gears, or even motors.

A short time after the work of Cumings and Zettl,
Zheng and Jiang [2] estimated the frequency of the oscil-
lations in this system to be of the order of GHz. This result
is also very interesting since in the macroscopic world
moving parts with such frequencies do not exist at the
present time. But as in the macroscopic world moving
parts have friction forces which hinder the motion and
dissipate energy. We hence have to know the importance
of these forces before conceiving such devices. Our work
will thus focus first on methods of calculation of the
friction and second an application of these theories to
the multiwalled nanotubes.

The plan of this Letter will be as follows: We are first
going to introduce the theoretical framework for the
description of the mechanics of nanotubes. We will then
solve the classical equations of motion and calculate the
dynamic friction coefficient by molecular-dynamics
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We have depicted in Fig. 1 two sliding nanotubes. R is
the distance between the centers of mass of each nano-
tube. The Hamiltonian of the system of two nanotubes is
given by

H � T1 � T2 � V
�1�
TB � V�2�

TB �
1

2

X
ij

VLJ�r
�1�
i � r�2�j �; (1)

where T1 and T2 are, respectively, the total kinetic ener-
gies of the inner and outer tubes, V�1�

TB and V�2�
TB are the total

Tersoff-Brenner potentials of both tubes.We use the set of
parameters which optimizes the geometric structure [5].
The last term is the interaction potential between the
tubes, which is taken as a 6-12 Lennard-Jones potential
calculated by Lu and Yang [6] and widely used for mo-
lecular-dynamics simulations of nanotubes [2,6–8].

The calculation of the friction coefficient will be done
by using an adiabatic approximation since there are two
different time scales in the system. The fast time scale is
the one of the vibrations of the atoms which is of the order
of the fs and the slow time scale is the one of the motion
of the mass centers of the tubes which is of the order of
the ps in our case. Thanks to this difference in time
scales, we can use a method developed by Jarzynski,
Berry, and Robbins [3,4] which is based on the fact that
the following quantity is an adiabatic invariant [9,10],

��E; �t� �
Z
dz��E�H�z; �t��; (2)
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where � is a small parameter, E the energy of the fast
system, and H is an ergodic adiabatic Hamiltonian. This
means that H slowly evolves with time and that, at any
instantaneous time, H produces trajectories which ex-
plore their energy shells ergodically and chaotically. z �
�q;p� represents the fast phase-space variables. The
smallness of the parameter � guarantees that the motion
of vibration is fast compared to the motion of the mass
centers. The other important assumption is that the force
on the slow system can be expressed as an average over
the fast degrees of freedom since the time scale of the fast
system is much smaller. We hence write the force as

F � �
Z
dz � rH; (3)

where � is the probability density of the fast system and
r � @=@R is the derivative with respect to the slow
variable. In our specific case R is the distance between
the mass centers of the tubes. Using the fact that there are
two different time scales, � is expanded as

��z; t� � �0�z;R� � ��1�z;R; t� � � � � ; (4)

where the first order term �0 depends only on the slow
time which is regarded as the parameter R. The evolution
of � is given by the Liouville equation. Injecting the
expansion (4) in the Liouville equation gives a hierarchy
of equations which can be solved using a microcanonical
distribution for �0. Having calculated � to the first order
in � one can find the following reaction force:

F � �rE� � � _RR; (5)

where the first order term is the Born-Oppenheimer force
with the energy of the fast system E and the second term
the friction force where the velocity _RR of order � appears.
The dynamic friction coefficients � are given by


ij �
1

@E�
@E

�
@E�

Z 1

0
d� Cij���

�
; (6)

where @E is the partial derivative with respect to the
energy of the degrees of freedom of vibration E and
��E;R� is defined by Eq. (2). The autocorrelation func-
tion is given by the following expression:

Cij��� � h@i ~HH�@j ~HHiE;R; (7)

where ~HH � H�z;R� � E�R� represents the fluctuations of
the Hamiltonian. We can simplify the expression of the
friction in Eq. (6) by using the Boltzmann equation S �
kB ln@E� and the thermodynamic relation @E=@S � T.
Moreover, the adiabatic parameter R is one dimensional
in our system since the relative motion of the tubes is
mainly in the longitudinal direction. We hence get


 � ��� @E�
Z 1

0
d� C��� � �

Z 1

0
d� C���; (8)

with � � 1=kBT. In Eq. (8), we have used the result that
the second term with @E is a negligible correction of the
185503-2
order of the inverse of the system size. The autocorrela-
tion function is given by

C��� � hFLJ���FLJ�0�iE;R � hFLJi
2
E;R; (9)

where FLJ is the total Lennard-Jones force in the longi-
tudinal direction,

FLJ �
1

2

X
ij

@VLJ

@R
�r�1�i � r�2�j �: (10)

We observe that Eq. (8) satisfies the fluctuation-dissipa-
tion theorem relating the fluctuating force acting on a
system in a bath to the friction kernel in the generalized
Langevin equation:

kBT ��t� � hf�t�f�0�i; (11)

with f � FLJ � hFLJi. Equation (8) is hence obtained in
the Markovian limit where the friction kernel (11) decays
on a short time scale such that ��t� � �0��t�.

We are now going to show the results of the molecular-
dynamics simulation.We focus our numerical studies on a
specific nanotube, namely, (5,0)@(15,0) which is com-
mensurate in the classification of Ref. [11]. The inner tube
hasN1 � 60 atoms and a length of l1 � 10:9 �A. The outer
tube has N2 � 240 atoms and a length of l2 � 15:3 �A.
The relative mass is hence  � 576 amu. The molecular-
dynamics simulation is straightforward. We first extract
the internal nanotube such as the initial distance between
both mass centers is R0 � 6:0 �A. The tubes centers of
masses have vanishing initial velocity and angular mo-
mentum. We then start the simulation and solve the
Newtonian dynamics with a fourth-order Runge-Kutta
integration scheme in the microcanonical ensemble. The
initial temperature of the system is 300 K, which is
introduced by a Maxwell-Boltzmann distribution of the
initial velocities and a short early time relaxation. We use
a time step of 0:1 fs.

First, we can predict the energy to be dissipated by the
sliding motion and thus the increase of the temperature of
the system. Calculating the difference of energies be-
tween the minimum of the total Lennard-Jones potential
VLJ�R� and the initial value VLJ�R0� gives us �Es �
0:623 eV. Using �E � 3NkBT where N � N1 � N2

we hence should have an increase in temperature of
�T � 8:04 K.

We observe in Fig. 2 a double exponential decay in the
motion. The origin of the double exponential decay holds
in the fact that, in the initial configuration, a part of the
inner tube is outside the outer tube. In this case, the
friction is higher because the inner tube interacts with
the edge of the outer tube and bounces during the reentry.
It is only after a while that the inner tube oscillates inside
the outer tube. We see that the oscillations are damped as
expected. We can use a simple model to describe the
dynamics when the inner tube remains inside, in which
case the potential energy of the relative motion between
both tubes can be approximated by a harmonic potential.
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FIG. 3. (a) Autocorrelation function of the inner tube force.
(b) Time integral of the autocorrelation function (a) numeri-
cally converging to the friction coefficient. The small fluctua-
tions seen beyond about 80 fs in the autocorrelation function (a)
and its integral (b) give a negligible contribution and are
reduced if the statistics used in the averaging are increased.
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FIG. 2. (a) Evolution of the distance between mass centers
represented by the successive maxima at each oscillation.
(b) Evolution of the energy of the relative motion also repre-
sented by the successive maxima at each oscillation. In this
small system, the oscillations have a period of about 10 ps. The
crossover between the exponentials happens around 120 fs
when the bouncing of the edges ceases. The inner tube is
entirely inside the outer one after about 400 fs.
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We hence have a Newton equation of the form

  RR � �
 _RR� kR; (12)

which can be solved to show that the successive maxima
in position R and energy E � 1

2 
_RR2 � 1

2 kR
2 decay as

jRjmax / e
�
t=2 and Emax / e

�
t= : (13)

We hence expect to have a ratio of 2 between the damping
rates of the maxima in energy and position. By perform-
ing fits of the curves in Fig. 2, we get, respectively,
0:000 72=ps and 0:0015=ps, in good agreement with the
expectation. Multiplying by the relative mass we finally
get the friction coefficient 
 � 0:84 � 0:02 amu=ps.

The next step is to calculate the friction coefficient
with the autocorrelation-function method. According to
Eqs. (8)–(10), the friction coefficient is given by the time
integral of the autocorrelation function of the force acting
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on the slow system with the distance between the centers
of mass fixed as a parameter. The calculation of the
autocorrelation function is also performed by molecu-
lar-dynamics simulation except that the distance between
the centers of mass is kept constant by compensating at
each time step the motion of each atom by the motion of
the mass center of their respective nanotube. We suppose
that our system is ergodic and mixing (meaning that its
autocorrelation functions vanish asymptotically at long
times). Since we have nearly one thousand degrees of
freedom this should be a good approximation. We can
thus use the ergodic theorem and replace the ensemble
average in Eq. (9) by a time average.

Figure 3 depicts the results of the numerical calculation
of the autocorrelation function and its time integral giv-
ing asymptotically the friction coefficient. With this
autocorrelation-function method, we find the value 
 �
0:82 amu=ps for the friction coefficient, in excellent
agreement with the value obtained by direct molecular-
dynamics simulation. The great advantage of the autocor-
relation-function method is that the calculation is now
185503-3
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FIG. 4. Standard deviation of the force versus temperature.
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about 50 times faster. Furthermore the autocorrelation-
function method is much more precise since it does not
involve fitting to get the friction coefficient.

Furthermore, the autocorrelation-function method
allows us to obtain a theoretical formula for the fric-
tion coefficient. We first notice that the autocorrelation-
function decays on the time scale of the vibrations of the
atoms in the carbon nanotubes. This time scale is of the
order of the inverse of the Debye frequency !D so that
the correlation time should be given approximately by
tC � 2$=!D. Since the Debye temperature of the nano-
tube is $D � 1000 K [12], we hence expect the autocor-
relation function to decay to zero over a correlation time
approximately equal to 50 fs, which is indeed confirmed
by Fig. 3. Moreover, the autocorrelation function at time
zero is equal to the variance �F2 of the force. We can
therefore approximate the time integral of the autocorre-
lation function and obtained the following approximate
formula for the friction coefficient:


 �
1

kBT
1

2

2$
!D

�F2: (14)

Thanks to this formula, the evaluation of the friction
coefficient reduces to the evaluation of the variance of
the fluctuating force. On this ground, we now investigate
the dependence of the friction coefficient on temperature.
We have depicted in Fig. 4 the result of the numerical
calculation of the standard deviation of the force. We see
that the standard deviation of the force increases linearly
with the temperature, hence the friction coefficient also
increases linearly with temperature: 
 � T. The fact that
friction increases with temperature in our system can be
understood by the fact that the dissipation of energy of the
slow motion is due to the coupling with the vibrating
degrees of freedom. Increasing the temperature results
into larger vibrational motion and thus into higher fric-
tion. Furthermore, the calculation shows that edge effects
give to the small system we here considered, a larger
friction than to a system of double length. Then the
friction increases in systems from double to longer
185503-4
lengths, the coefficient remaining of the same order of
magnitude as in the small system here studied.

In this Letter, we have developed theoretical and nu-
merical methods to calculate the dynamic friction coef-
ficient in the one-dimensional sliding motion of two
concentric carbon nanotubes. We focused our numerical
studies on a commensurate double-walled nanotube. We
obtained by a molecular-dynamics simulation the energy
damping and thus the increase in temperature of the
system. The simulation shows the importance of edge
effects at early times: a significantly larger damping is
due to bouncing effects when the inner nanotube reenters.
This effect disappears at long times when the inner tube
moves inside the outer tube. The long time behavior is in
good agreement with the one-dimensional model we
proposed. We have then calculated the friction with the
autocorrelation-function method. We observed that the
autocorrelation function decreases to zero with a time
of the order of 50 fs which is a value in agreement with
the experimental value of the Debye temperature. The
integral of the autocorrelation function gives the same
result as the direct molecular-dynamics simulation with
much less calculation time, actually a factor 50, and with
better precision since we avoid the use of fitting methods.
We can thus conclude that the autocorrelation-function
method is very efficient for the calculation of friction
coefficients. Moreover, we have obtained a formula which
relates the dynamic friction coefficient to the Debye
frequency and the standard deviation of the fluctuations
of the forces between the nanotubes and determined that
the dynamical friction coefficient increases with the
temperature.
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