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We describe a quantum error correction scheme aimed at protecting a flow of quantum information
over long distance communication. It is largely inspired by the theory of classical convolutional codes
which are used in similar circumstances in classical communication. The particular example shown
here uses the stabilizer formalism. We provide an explicit encoding circuit and its associated error
estimation algorithm. The latter gives the most likely error over any memoryless quantum channel, with
a complexity growing only linearly with the number of encoded qubits.
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to the quantum domain of their classical analogs, and
hence inherit their most important properties. First, they
have a maximum likelihood error estimation algorithm

simplifies the description of the error estimation algo-
rithm. We use the following standard notations for the
Pauli operators acting on a single qubit:
In recent years, the discovery and development of
quantum computation and communication has shed new
light on quantum physics. The potential applications of
these new fields encompass a wide variety of subjects,
ranging from unconditionally secure secret key genera-
tion protocols [1] to efficient integer factoring algorithms
[2] or enhancement of communication complexity [3].
However, the practical realization of such protocols and
algorithms remains a very involved task mainly because
of the inherent instability of quantum superpositions [4]
as well as intrinsic imprecisions of the physical devices
that process quantum information. These errors wipe out
the quantum superpositions together with entanglement,
which are usually seen as key resources of the power of
quantum algorithms and protocols [5]. Hence, protecting
the quantum nature of information became one of the
most important challenges to prove the feasibility of
quantum computers. The discovery of quantum error
correction schemes [6,7] notably opened the future of
large scale quantum information processing: a certain,
but unfortunately very small, degree of imprecision can
be tolerated at each step of a quantum transformation and
still allow a speedup over classical information process-
ing [8,9]. However, building a fault-tolerant quantum
computer remains largely out of reach of the present
day practical realizations, principally because of the large
number of physical qubits required to account for the
error correction.

On the other hand, quantum cryptography and more
generally the field of quantum communication seems
more promising in the near future. Some quantum key
distribution protocols have been implemented and the
associated devices seem to be close to commercialization
[10]. Within this context, we construct a new family of
codes—quantum convolutional codes—aimed at pro-
tecting a stream of quantum information in a long dis-
tance communication. They are the correct generalization
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for all memoryless channels with a complexity growing
linearly with the number of encoded qubits. This is an
important issue since finding the most likely error—a
strategy which allows one to determine the most likely
sent codeword—is in general a hard task: for a generic
family of block codes with constant rate, the maximum
likelihood error estimation algorithm has a complexity
growing exponentially with the number of encoded qu-
bits. Hence, generic block codes rapidly require one to
employ suboptimal error estimation procedures which, as
a consequence, do not exploit the whole error correcting
capabilities of the code. Moreover, our algorithm can
easily handle variations in the properties of the commu-
nication channel (i.e., a change in the single qubit error
probabilities). The second advantage of quantum convolu-
tional codes is their ability to perform the encoding of the
qubits on-line (i.e., as they arrive in the encoder). Thus, it
is not necessary to wait for all the qubits to be ready to
start sending the encoded state through the communica-
tion channel: it reduces the overall processing time of the
qubits which is an additional source of decoherence. Note
that an attempt at defining quantum convolutional codes
was made some time ago [11], but missed some crucial
points concerning the error estimation algorithm as well
as error propagation properties.

In this Letter, we deal with a specific example drawn
from our general theory. We construct a rate 1=5 quantum
convolutional code: we explain how to encode and decode
a stream of qubits efficiently, and we expose the maxi-
mum likelihood error estimation algorithm. This will
give the necessary intuition to understand how to general-
ize the present results to a wider framework [12].

Description of the code.—The particular code we wish
to present is best described by using the stabilizer formal-
ism [13]. This provides a simple way to understand the
encoding and decoding operations. Moreover, the error
syndromes can be easily identified, which considerably
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�
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0 �1

�
;

(1)

so that XY � iZ, while I denotes the identity matrix.
Since convolutional codes are designed to deal with infi-
nite streams of information qubits, the number of genera-
tors of the stabilizer group is infinite as well. In practice,
transmission starts and ends at a given time, thus we
consider only generators made of a finite number of
Pauli operators.

The code subspace is described by the generators of its
stabilizer group, S. These generators are given by

M0 � XZ I I I I I I . . . ; M1 � ZXXZ I I I I . . . ;

M2 � I ZX X Z I I I . . . ; M3 � I I ZX X Z I I . . . ;

M4 � I I I ZX X Z I . . . ;

M4i�j � I�5i �Mj; 0< i; 1 � j � 4;

M1 � . . . I I I I ZX: (2)

It is easy to check that all the generators commute and are
independent. Thus, the code subspace (i.e., the largest
common eigenspace of the generators with eigenvalue
�1) is nontrivial.

An important point to address when considering sta-
bilizer codes is the ability to manipulate encoded infor-
mation. Namely, we want to find the encoded Pauli
operators Xi, Zi corresponding to logical qubit i. These
operators must satisfy the following relations:

X i; Zi 2 N�S	 � S; (3)

8i � j; �Xi; Xj� � �Zi; Zj� � �Xi; Zj� � 0; (4)

where N�S	 denotes the normalizer of S. Equation (3)
states that encoded Pauli operators leave the code sub-
space globally invariant, but have a nontrivial action on
its elements, while Eq. (4) ensures that manipulating qubit
i does not affect other qubits. There exists a great choice
of different sets of such operators; however, they are not
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equivalent in the perspective of effectively manipulating
encoded quantum information in an easy way: in practice
only those with a small number of terms different from
the identity are useful. For our particular example, such
set exists and has a structure invariant by a shift of five
qubits:

X1 � I Z I X I Z I I . . . ; Z1 � I Z ZZZZ I I . . . ;

Xn � I�5n � X1; n > 1;

Zn � I�5n � Z1; n > 1: (5)

Hence, a unitary transformation on a single encoded qubit
will in general be implemented by a unitary transforma-
tion on five physical qubits.

At this point, one can wonder what in this code differs
from a generic block code. The answer to this question
comes from the particular structure of the stabilizer gen-
erators: besideM0 andM1, the generators of the stabilizer
group can be cast into sets of constant size (e.g., four),
each set acting on a fixed number (e.g., seven) of consecu-
tive qubits. In addition, each set has a fixed overlap (e.g.,
of two qubits) with the set immediately before and im-
mediately after. This very peculiar structure defines
quantum convolutional codes and we can prove [12] that
this implies the possibility of on-line encoding and the
existence of an efficient error estimation algorithm.

Encoding circuit.—As explained by Gottesman [13],
there are various ways to realize the encoding into the
code subspace. However, for convolutional codes, they are
not equivalent: standard encoding circuits usually require
one to wait until the last ‘‘to-be-protected’’ qubit has been
obtained before sending the encoded state. In this section,
we explain how to take advantage of the structure of the
stabilizer generators to overcome this limitation and
encode the qubits on-line. We first exhibit a map from
the computational basis of the to-be-protected qubits to
a basis of the code subspace. As a second step, we
derive the quantum circuit implementing this map in a
unitary way.

More precisely, consider the following set of states:
fj �c1; c2; c3; . . .	igci2f0;1g � fPj0; 0; 0; 0; 0; c1; 0; 0; 0; 0; c2; 0; 0; 0; 0; c3; . . .igci2f0;1g; (6)

where P �
Q
i�I �Mi	=

���
2

p
is the projection operator onto the code subspace. Since Zi commutes with all the generators

of the stabilizer group, the following equation holds for any element of the set:

Z iPj0; 0; 0; 0; 0; c1; 0; 0; 0; 0; c2; 0; 0; 0; 0; c3; . . .i � ��1	ciPj0; 0; 0; 0; 0; c1; 0; 0; 0; 0; c2; 0; 0; 0; 0; c3; . . .i: (7)
This implies that fj �c1; c2; c3; . . .	igci2f0;1g is an ortho-
normal basis of the code subspace. Hence, the natural
encoding consists in mapping the computational basis of
the to-be-protected qubits, fjc1; c2; c3; . . .igci2f0;1g into the
basis fj �c1; c2; c3; . . .	igci2f0;1g.

In practice, to encode a stream of qubits qi, we first
add to it ancillary qubits in the j0i state such that the
to-be-protected qubit i is now at the position 5i� 1.
Then, we need to implement P for these specific input
states as a unitary transformation onto the whole
Hilbert space. This can be done in full generality
as explained in [13], and gives the encoding circuit
of Fig. 1. From this simple example, it is easy to
understand that the possibility of on-line encoding for
quantum convolutional codes is a consequence of
the finite extension of the support of the generators of
the stabilizer group and of the encoded Pauli operators.
Also note that alternative encoding methods can be found
and can be relevant when considering some specific ap-
plications, but these issues are beyond the scope of this
Letter.
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FIG. 2. Encoding (left) and decoding (right) circuits satisfy-
ing the pearl-necklace structure. The dashed boxes in the
decoding circuit define the different layers. The gates inside a
layer commute with each other, granting noncatastrophicity
and forward decoding.

FIG. 1. Beginning of the encoding circuit. H is the Hadamard
transform, and the circles represent the control qubit for a given
gate. The circuit is run from left to right. Ancillary qubits are
in the j0i state while the to-be-protected quantum information
is in qubits q1; q2; . . . .
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Error propagation and on-line decoding.—Because of
their very specific nature, convolutional codes propagate
information contained in a given qubit to its successors
(see again Fig. 1). During the decoding process (i.e., the
inverse of encoding) this can actually become a problem:
an error affecting a finite number of qubits before decod-
ing can propagate through the decoding circuit and finally
affect an infinite number of qubits. Such error is called
catastrophic. It is worth mentioning that this issue is not
specific to the quantum domain: classical convolutional
encoders might also be catastrophic [14,15]. Fortunately,
in both cases, noncatastrophic encoders exist. More pre-
cisely, given an encoder one can determine whether it has
catastrophic errors. For classical codes this is a well-
known result established by Massey and Sain [16]. For
the quantum setting, the following condition is both
necessary and sufficient for noncatastrophicity: the gates
of the decoding circuit can be arranged in a finite number
of layers, such that they commute with each other inside a
layer. Figure 2 illustrates this ‘‘pearl-necklace’’ structure
for our example, and thus proves that our quantum con-
volutional code is noncatastrophic.

In this paragraph, we briefly mention how this result
can be derived. The sufficiency of the above condition is
easily obtained by realizing that errors can only propa-
gate through noncommuting gates of the decoding circuit.
Hence, for a finite size error the pearl-necklace structure
imposes that after each layer only a finite number of
qubits are potentially erroneous. Thus, no such error can
propagate infinitely through the whole decoding circuit.
On the other hand, necessity is obtained by explicitly
exhibiting the pearl-necklace structure for a noncata-
strophic decoding circuit. Without loss of generality, we
can assume this circuit is obtained by running the encod-
ing circuit in reverse order. To group the gates into the
pearl-necklace structure, we start by changing the order
of two noncommuting gates in this circuit. This can be
regarded as an error which, by hypothesis, can be cor-
rected by a finite size unitary operation. In turn, this
finiteness allows one to repeat the above procedure at
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regular intervals in the circuit and allows the appropriate
grouping (compare Figs. 1 and 2). The formal proof is
straightforward but cumbersome and we leave it for a
separate paper [12]. Note also that this procedure is an
explicit algorithm to check for catastrophicity of a code.

Moreover, this condition implies the existence of a
forward decoding scheme: there is no need to wait for
the last qubit to start decoding (see Fig. 2). For non-
catastrophic codes, both encoding and decoding can be
done on-line [12].

Maximum likelihood error estimation.—An error cor-
recting code aims at protecting information sent over a
noisy communication channel by letting the receiver infer
which error possibly affected the information. This is
the role of the error estimation algorithm. On average,
the correct information is most often retrieved when the
estimated error coincides with the most likely error. Thus,
it is both of theoretical and practical relevance to have an
efficient maximum likelihood error estimation algorithm
for our quantum convolutional codes. In this section, we
exhibit such algorithm. It is indeed the quantum analog of
the well-known Viterbi algorithm for classical convolu-
tional codes [14,15]. The Viterbi algorithm realizes a
maximum likelihood error estimation on all memoryless
channels with a complexity linear in the number of en-
coded bits. This explains why classical convolutional
codes are so widely used for reducing the noise on com-
munication channels.

Our algorithm for quantum convolutional codes pro-
cesses the information obtained through the syndrome in
order to infer the most likely error. The circuit for obtain-
ing the syndromes follows the usual phase estimation
scheme: an ancillary qubit is prepared in the j0i state;
undergoes a Hadamard transform; controls the applica-
tion of one of the generator Mi of the stabilizer group;
again undergoes a Hadamard transform; and is finally
measured in the fj0i; j1ig basis. Then, the algorithm up-
dates a list of maximum likelihood error candidates by
looking at a small number of syndromes at a time, and by
177902-3
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taking local decisions. It is preceded and followed by
appropriate initialization and termination steps.

The initialization step lists all error candidates, fE0
j gj,

for the first two qubits which are compatible with the
syndrome M0. There are exactly 8 � 42=2 of them (there
are 42 different operators with support on the first two
qubits, but the constraint associated with M0 divides this
set into two equal parts). This list constitutes the input of
the main loop of the algorithm. At step i, the algorithm
constructs a list of some most likely error candidates,
fEijgj, compatible with the syndromes M0 to M4i. Each
candidate Eij is thus specified only on qubits 1 to 5i� 2.
The crucial point of the algorithm is to maintain a fixed
size of this list, and hence to avoid the exponential blow
up that would arise when listing all error candidates
compatible with these syndromes. More precisely, Eij is
a most likely candidate whose restriction on qubit 5i� 1
and 5i� 2 is prescribed by the index j running over the
set of 16 possible errors affecting those two qubits. The
computation of any error candidate Ei�1

k is easily
achieved provided fEijgj: consider the set of all possible
extensions of the error candidates Eij to qubit 5i� 3 to
5i� 7 that are compatible with syndromes M4i�1 to
M4�i�1	, and which have the prescribed error k at position
5i� 6 and 5i� 7. It is easy to check that any such ele-
ment is now compatible with syndromes M0 to M4�i�1	.
The specific candidate Ei�1

k is chosen to be the most likely
operator among the elements of the latter set (in the case
of a tie, one is chosen at random). This procedure is
continued until reaching M1, which again selects half
of the candidates. The termination of the algorithm out-
puts the most likely candidate among the remaining ones.
This constitutes the most likely error given the value of
all the syndromes for the received stream of qubits [12].

The main property used to prove this fact is related to
the structure of the generators of the stabilizer group: the
value of the syndromes associated to M4i�1 to M4i�4

depends on the syndromes M0 to M4i only through the
error operators at position 5i� 1 and 5i� 2. Thus, taking
a sequence of local decisions allows one to construct a
list of error candidates among which one will coincide
with the most likely error until qubit 5i� 2, while on the
other hand maintaining a linear complexity of the algo-
rithm as the number of encoded qubits increases. Note
that the error maximizing the likelihood is known when
the last syndrome is measured. Hence, it is in principle
necessary to wait until the end of the transmission to
actually correct the estimated error. However, as for the
classical Viterbi algorithm, numerical simulations show
that the different candidates at a given step coincide with
the most likely error except on their last few positions.
Thus, in practice it is possible to estimate the error on-
line. In addition, we want to stress that without increasing
its complexity, this algorithm can take into account all
memoryless quantum channels even if the single qubit
error probabilities are not constant in time. For example,
one could imagine that the qubits are photons sent
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through an optical fiber, and that the probabilities are
evaluated by sending probe photons containing no useful
information. Finally, as the codes described here are the
exact translation to the quantum setting of the classical
convolutional codes, one can also derive suboptimal error
estimation algorithms (for their classical analogs see
[14,15]). Most importantly, quantum convolutional codes
can be decoded iteratively and should allow quantum
turbo decoding [12].

Conclusion.—In this Letter, we presented the theory of
quantum convolutional codes by an example. We gave
explicitly the associated encoding and decoding circuits,
as well as a low complexity maximum likelihood error
estimation algorithm. We believe that such codes could be
used to reduce errors for long distance quantum commu-
nications provided that we are able to perform a small and
fixed number of quantum gates with good fidelity.
Moreover, the tools developed for quantum convolutional
codes can be used to translate other families of classical
codes to the quantum domain, like, for instance, low
density parity check codes.
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