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Unconditional Preparation of Entanglement between Atoms in Cascaded Optical Cavities
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We propose a scheme to unconditionally entangle the internal states of atoms trapped in separate
high-finesse optical cavities. The scheme uses the technique of quantum reservoir engineering in a
cascaded cavity-QED setting, and for ideal (lossless) coupling between the cavities generates an
entangled pure state. Highly entangled states are also shown to be possible for realizable cavity-
QED parameters and with nonideal coupling.
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FIG. 1. Cascaded cavities, each containing a trapped atom. A
unidirectional coupling between the cavities is achieved using
Faraday isolators (F). The (one-sided) cavities have field decay
of certain tunable system parameters (i.e., Raman cou- rates �1 and �2.
Cold trapped atoms and quantum light fields are prom-
ising candidates for the realization of quantum computing
and quantum communication protocols [1,2], with long-
lived atomic states (electronic or motional) constituting
quantum registers, upon which (local) quantum logic
operations can be performed, and light fields providing
a means of distributing quantum information and entan-
glement between different nodes in a network of registers
[3]. The workability of such atom-light networks will
depend heavily on the extent to which propagating light
fields can reliably transfer quantum states and/or estab-
lish quantum entanglement between atoms at different
nodes of the network.

In the context of entanglement preparation between
atoms at separate nodes, a variety of schemes have been
proposed recently. Based on their operating principles,
these schemes can be grouped loosely as follows:
(i) ‘‘Local’’ entanglement, prepared by some means be-
tween atoms at one node, is transferred, via carefully
controlled quantum state-transferring light pulses, from
a subset of the entangled atoms to atoms at a distant node
[3,4]. (ii) Quantum-correlated light fields, produced, e.g.,
by nondegenerate parametric down-conversion, interact
with separate atoms in such a way as to transfer some
of their properties to, and thereby entangle, the atoms
[5–11]. (iii) Measurements (e.g., single-photon detec-
tions or homodyne detection over some interval) are
made on superpositions of light fields emanating from
separate atomic samples, or on a probe light field that has
interacted in a prescribed way with different samples.
Indistinguishability in themeasurement conditionally pro-
jects the atomic systems into an entangled state [12–21].

Here we propose a scheme for preparing distributed
atomic entanglement that is quite distinct from those
listed above. While it employs cascaded cavity-QED sys-
tems (as, e.g., in [3,4]), it does not require initial local
entanglement between atoms or tailored optical pulses,
nor does it involve separate nonclassical light sources or
projective measurements. The entangled atomic state is
prepared unconditionally and under steady-state condi-
tions. Furthermore, the degree of entanglement (and also
the mixedness) of the state is adjustable through variation
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pling strengths), and, for ideal transmission of light
between cavities, a pure entangled state can be prepared.

Our scheme employs quantum reservoir engineering
[22] in a cavity-QED setting [23]. Two high-finesse opti-
cal cavities, each containing one tightly confined atom,
are arranged in a cascaded configuration with a unidirec-
tional coupling from cavity 1 to cavity 2 (Fig. 1). Both
cavities are taken to have the same resonant frequency
!cav and their individual field decay rates are �1 and �2.
Inefficiencies and losses in the coupling between the two
cavities are modeled by a real parameter �, where 0 �
� � 1 and ideal coupling corresponds to � � 1.

Each atom has two stable ground states, j0i and j1i (the
qubit states). The cavity field and two auxiliary laser
fields drive two separate Raman transitions between these
states (Fig. 2). In particular, transitions j1i $ jri and
j0i $ jsi are driven by detuned laser fields with (com-
plex) Rabi frequencies �r and �s, while the transitions
j0i $ jri and j1i $ jsi are strongly coupled to the cavity
mode, with coupling strengths gr and gs. Detunings of
the fields from the excited states jri and jsi are �r and �s.
A fifth state jti is virtually excited from j0i by another
strongly detuned laser field, adding an additional ac-Stark
shift to the state j0i.

The master equation for the total system density op-
erator �T is (taking 
h � 1)

_�� T � �i�H;�T� 	Lcav�T 	Lspon�T; (1)

where H � Hcav 	Hat 	Hint, with

Hcav �
X
i�1;2

!cava
y
i ai ; (2)
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Hat �
X
i�1;2

f!rjriihrij 	!sjsiihsij 	!tjtiihtij 	!1j1iih1ij 	 ��ri=2�e�i!Lrtjriih1ij 	 H:c:�

	 ��si=2�e
�i!Lstjsiih0ij 	 H:c:� 	 ��ti=2�e

�i!Lttjtiih0ij 	 H:c:�g; (3)

Hint �
X
i�1;2

grjriih0ijai 	 gsjsiih1ijai 	 H:c:�; (4)
(H.c. denotes Hermitian conjugate) and

L cav�T �
X
i�1;2

�i2ai�Ta
y
i � ayi ai�T � �Ta

y
i ai�

� 2
�������������
��1�2

p
�ay2 ; a1�T� 	 ��Ta

y
1 ; a2��: (5)

Here, ai is the cavity mode annihilation operator for
cavity i, !Lj (j 2 fr; s; tg) denote the laser frequencies,
and the term Lspon�T describes atomic spontaneous emis-
sion. The term Lcav�T describes damping of the cavity
modes through their output mirrors, plus the unidirec-
tional coupling from cavity 1 to cavity 2 [24].

Assuming large detunings of the fields from the excited
atomic states (i.e., j�jj � j�jij; gr;s; �i; �j, where �j is
the linewidth of state jji), we can adiabatically eliminate
these states, and neglect atomic spontaneous emission, to
obtain a simplified model of the system in the form of a
reduced master equation for a pair of effective two-level
atoms (states j0i and j1i) coupled to the cavity modes.
This reduced system is characterized by the parameters

�ki �
gk�ki

2�k
; �ji �

j�jij
2

4�j
; �k �

g2k
�k
; (6)

where k 2 fr; sg, i 2 f1; 2g, and j 2 fr; s; tg; �ki are
Raman coupling rates, while �ji and �k correspond to
laser- and cavity-induced atomic level shifts, respectively.

To further reduce the model, we assume that �i �
j�kij; j�kj (i.e., a ‘‘bad cavity’’ limit, but only with respect
to the parameters of the effective two-level atoms). This
allows us to adiabatically eliminate the cavity mode to
give a master equation for the atomic density matrix �,
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FIG. 2. Level scheme for each atom. The excited states have
energies 
h!j (j � r; s; t). Such an atomic configuration could
be realized, e.g., with alkali atoms, where j0i and j1i are
different ground-state sublevels. Note also that jri and jsi can
be the same level, provided the two Raman channels remain
distinct (which would require !1 � 0). Apart from �ri, �si,
and �ti, we assume, for simplicity, that all other parameters
are the same for each atom.
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_�� �
X
i�1;2

2Ri�R
y
i � Ry

i Ri�� �Ry
i Ri�

� 2
���
�

p
�R1�; R

y
2 � 	 �R2; �R

y
1 ��; (7)

with Ri � �ri��
i 	 �si�	

i �=
�����
�i

p
, where ��

i � j0iih1ij.
The first line of (7) describes the separate interaction of

each atom with an effective squeezed reservoir [23],
while the second line describes a unidirectional coupling
between the atoms, including terms that correspond to
either correlated or anticorrelated excitation of the atoms
(e.g., �	

1 �
	
2 � or �	

2 �
�
1 �). As shown below, with appro-

priate choices of the parameters f�ri; �sig, these processes
as well as the individual-atom excitation processes can be
manipulated in such a way as to produce strongly en-
tangled steady states of the two-atom system.

Note that the derivation of (7) also requires that the
phase of the effective two-level system remains constant
with respect to the phase difference between �ri and �si,
i.e., the two-level atomic systems and squeezed reservoirs
must be ‘‘resonant’’ with each other. Under conditions of
Raman resonance (!cav �!Lr � !Ls �!cav � !1), this
requirement leads to the condition

�ri � �si � �ti � 0: (8)

It is to satisfy this condition while retaining flexibility in
our choices of �ri;�si and �r;s that we use the additional
transition j0i $ jti. The level shift �ti provides an extra
degree of freedom with which to satisfy (8).

If the atoms are driven such that �r1=
������
�1

p
�

�r2=
������
�2

p
� a and�s1=

������
�1

p
� �s2=

������
�2

p
� b, then an ana-

lytic steady-state solution of (7) can be obtained as

�ss �

0
BBB@

�11 0 0 �14

0 �22 �23 0
0 ��

23 �33 0
��
14 0 0 �44

1
CCCA; (9)

in the basis fj1112i; j1102i; j0112i; j0102ig, where

�11 � �jbj6 	 1	 �� 4�2�jaj2jbj4 	 �jbj2jaj4�=D;

�22 � jaj2jbj21� ���jaj2 	 1	 4��jbj2�=D;

�33 � jaj2jbj21� ���jbj2 	 1	 4��jaj2�=D;

�44 � �jaj6 	 �jaj2jbj4 	 1	 �� 4�2�jbj2jaj4�=D;

�14 �
���
�

p
a�b�jaj4 	 2� 4��jaj2jbj2 	 jbj4�=D;

�23 � 2
���
�

p
1� ��jaj2jbj2jaj2 	 jbj2�=D;

(10)
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and

D � �jaj4 	 jbj4 	 21	 2�� 4�2�jaj2jbj2�jaj2 	 jbj2�:

In general, �ss describes an entangled mixed state, but
for the case of ideal coupling between cavities (� � 1) we
obtain the pure state �ss � j ih j, where

j i � aj0102i 	 bj1112i�=N
1=2; (11)

with N � jaj2 	 jbj2. Note that the generation of this
pure state coincides with a complete absence of photons in
the output field from cavity 2, i.e., the cascaded system as
a whole is prepared in a dark, or decoherence-free state.

The state (11) approximates the maximally entangled
Bell states j��i � j0102i � j1112i�=

���
2

p
when a ’ �b.

The Bell states j �i � j0112i � j1102i�=
���
2

p
may be ap-

proximated in the same limits by choosing �r1=
������
�1

p
�

�s2=
������
�2

p
� a and �s1=

������
�1

p
� �r2=

������
�2

p
� b.

To gauge the performance of the scheme under more
general conditions, we have performed numerical simu-
lations taking into account the dynamics of the cavity
mode, imperfect coupling between the cavities, and
atomic spontaneous emission. To quantify the degree to
which the scheme generates a maximally entangled state,
we use the fidelity (maximal singlet fraction), for which
an analytic form exists in the case of two qubits [25].

The evolution of the atoms (from initial state j0102i)
towards a highly entangled state is shown in Fig. 3 in
a plot of fidelity against time, for several values of the
ratio a=b and for a coupling efficiency � < 1. The cavity-
QED parameters (g, �, �) used are taken from a recent
experiment [26]; for simplicity, we assume gr � gs � g.
The solid lines are solutions to (7), while the dashed
lines are derived from a more complete model including
0 10 20 30 40 50 60 70 80
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time (2π MHz)−1

F
id

el
ity a

b

c

FIG. 3. Fidelity (maximal overlap with a maximally
entangled state) versus time for g; �; �;�;�s�=2� �
110; 14:2; 5:2; 8000; 100� MHz, � � 0:98, and (a) a=b � 3,
(b) a=b � 2, (c) a=b � 1:5. Solid lines: from Eq. (7). Dashed
lines: cavity dynamics and spontaneous emission included.
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both cavity dynamics and the effects of atomic sponta-
neous emission from the three excited levels jrii, jsii, and
jtii. (We assume equal branching ratios where two differ-
ent decay channels are possible, e.g., jrii ! j0ii and
jrii ! j1ii.) With the cavity dynamics included in the
model, one finds that cavity-induced level shifts (pro-
portional to �r;s) can play an appreciable role; in par-
ticular, when they are not substantially less than �.
These shifts can be compensated for, and the fidelity
of the prepared state optimized, by choosing �r �
�s � �, !cav �

1
2 !Ls 	!Lr� � �, and �ri � �si �

�ti �
1
2 !Ls �!Lr� �!1, as we do for the results pre-

sented in Figs. 3–5.
Returning to Fig. 3, we note first the slowing down of

the evolution towards the steady state as the ratio a=b
approaches unity. This behavior is characteristic of atomic
evolution in a squeezed reservoir as the degree of squeez-
ing increases [23], which here corresponds to a=b! 1. In
fact, the slowest time scale in the atomic dynamics scales
in proportion to a=b� 1��2, which limits the maximum
attainable fidelity once spontaneous emission is taken
into account. As a=b! 1, the scheme also becomes
more sensitive to losses in transmission between the cavi-
ties (i.e., � < 1). This is highlighted by the fact that the
solid curve for a=b � 1:5 lies below that for a=b � 2
(contrary to the ideal case when � � 1).

These features are illustrated further in the contour
plot of Fig. 4, which shows the steady-state fidelity as a
function of a=b and �. Importantly, this plot also dem-
onstrates that significant steady-state entanglement is
possible for relatively modest values of a=b and �. Note
in addition that the characteristic state preparation times
(see Fig. 3) are typically orders of magnitude smaller than
achievable single-atom trapping times (see, e.g., [27]).

A closer examination of rates associated with Eq. (7)
and rates associated with atomic spontaneous emission
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FIG. 4. Steady-state fidelity as a function of � and the ratio
a=b. Other than �r, �t, and �, the parameters are the same as
in Fig. 3. Solid lines: from Eq. (7). Dashed lines: cavity
dynamics and spontaneous emission included.
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FIG. 5. Steady-state fidelity versus Y � g2=��� for
(a) a=b � 3, (b) a=b � 2, and (c) a=b � 1:5, with � � 1 (solid
lines) and � � 0:98 (dashed lines). To obtain these curves, g is
varied, while f�ri; �sig are kept constant by adjusting f�ri;�sig
appropriately (so that the condition �� �ri; �si remains
satisfied).
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(���2
j=�

2
j ) shows that the effects of spontaneous emis-

sion can be obviated, for a particular value of a=b, with a
sufficiently large value of g2=���. To quantify this more
carefully, the steady-state fidelity is plotted in Fig. 5
against the cooperativity parameter Y � g2=��� for
several values of a=b and for two values of the coupling
efficiency �. The effects of spontaneous emission are
clearly suppressed for Y � 1, although this condition
becomes more demanding as a=b! 1. However, it is
also apparent from Fig. 5 (and Figs. 3 and 4) that for a
particular � < 1 there exists an optimum value of a=b,
greater than one, for which the achievable fidelity is
maximized.

By breaking the symmetry between the atoms with
respect to Raman couplings (i.e., by varying the ratios
�ki=�k0i0), it is possible to controllably generate a wide
variety of mixed entangled states, corresponding to most
of the allowed combinations of entropy and concur-
rence [23,28]. Given multiple atoms within each cavity
and the ability to address these atoms individually and
sequentially with lasers, one might also consider pre-
paring multiple pairs of entangled atoms, to which one
could apply entanglement purification schemes [29].
Alternatively, with N atoms coupled collectively to the
cavity mode at each site, one could prepare entangled
states of separated atomic ensembles [19–21]. Collective
enhancement of the atom-cavity coupling strength also
alleviates the need for strong single-atom cavity coupling
strength [i.e., the condition g2=��� � 1 becomes
Ng2=��� � 1].

In conclusion, we have proposed a scheme for the
unconditional preparation of entangled states of distantly
177901-4
separated atoms. The scheme does not require entangled
light fields or projective measurements, and appears to be
feasible with existing experimental parameters.
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