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Fast and Accurate Single-Island Charge Pump: Implementation of a Cooper Pair Pump
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We introduce a Cooper pair ‘‘sluice’’ for the implementation of a frequency-locked current source.
The device consists of two mesoscopic SQUIDs and of a single superconducting island with a gate. We
demonstrate theoretically that it is possible to obtain a current as high as 0.1 nA at better than ppm
accuracy via periodically modulating both the gate charge and the effective Josephson coupling. We find
that the device is tolerant against background charge noise and operates well even in a dissipative
environment. The effect of the imperfect suppression of the Josephson coupling and the finite operating
frequency are also investigated.
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FIG. 1. (a) Schematic illustration of the device, the ‘‘sluice.’’

1=f noise and the phase fluctuations caused by the elec-
tromagnetic environment. The latter, however, may help
in achieving hcos’i � hsin’i � 0 if desired.

The role of the coils is to apply controlled flux pulses through
the SQUID loops, and they are synchronized with the periodic
gate voltage. (b) An improved three-junction SQUID.
Single-electron and Cooper pair devices have attracted
considerable attention recently. Applications such as the
single-electron pump [1] and the Cooper pair box for
quantum computing [2] have demonstrated that at suffi-
ciently low temperatures and high charging energies the
quantization of charge leads to some very interesting
effects. Especially, it has been shown that single electrons
can be pumped extremely accurately at frequencies f of a
few MHz with a relative uncertainty of 10�8 in normal
metal devices according to the relation I � ef [3]. This
has resulted in a standard of capacitance. However, the
pump frequencies, and thus current levels, have been too
low for the realization of a practical accurate current
source for nanoelectronic applications or for realizing
the quantum measurement triangle [4]. The attempts to
generalize the single-electron pump to a superconducting
Cooper pair pump [5,6] that, in theory, would allow for
higher-frequency pumping have been unsuccessful so far
due to a variety of reasons. In particular, Landau-Zener
tunneling between energy levels induces pumping errors.
In addition, there is always a considerable amount of
supercurrent leaking through the pump. Also, the inter-
play of the two conjugate variables, the phase and the
number of Cooper pairs, results in a coherent correction
such that the current is no longer given by the relation I �
2ef [7]. Further, the coherent correction is proportional
to cos’, where ’ is the phase difference over the whole
pump, whereas the supercurrent is proportional to sin’
rendering it impossible to choose ’ to eliminate both of
these simultaneously. The effect of nonidealities can be
reduced by adding more junctions, but this will compli-
cate the practical implementation due to the increasing
number of control parameters and cross capacitances.
Furthermore, one has to take into account the effect of
the fluctuating background charges responsible for the
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In this Letter we propose and critically analyze a
simplified scenario for implementing a Cooper pair sluice
that ideally has no dynamical supercurrent leaking
through the junctions and is governed by the relation I �
2ef or more generally I � 2nef, where n is the number of
pairs carried per cycle. First, we present the general idea
of the device. We also study the viability of implementing
the device by considering different sources of error and
show that the sluice is tolerant against several kinds of
nonidealities. We demonstrate that it is possible to con-
struct a frequency-locked current source that has, with
realistic assumptions, a yield of 0.1–0.2 nA with better
than 1 ppm error.

The device consists of just one superconducting island
that works as the sluice chamber and of two mesoscopic
SQUIDs; see Fig. 1. The role of the SQUID loops is to
serve as the sluice doors for the flow of Cooper pairs. The
control parameters which are varied periodically and
adiabatically include the gate voltage Vg and the magnetic
fluxes �a (a � l; r) through the SQUID loops. The idea of
controlling the effective Josephson coupling is used
throughout in the Josephson qubit literature; see, e.g.,
Ref. [2]. Utilizing flux pulses in Cooper pair shuttles [8]
has also been suggested in Ref. [9] but in a nonadiabatic
context. Here we work in the adiabatic limit. Note that the
device is particularly simple; there is only one voltage
2003 The American Physical Society 177003-1
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FIG. 2. Pulse sequence for pumping a single Cooper pair
through the sluice. The exact form of the pulses is not crucial
as long as the synchronization is maintained. The gate charge
(or voltage) pulse, which is a shifted harmonic one here, may
be generalized to have a larger amplitude and thus a larger
number of pairs could be pumped.
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gate to adjust. The current through the sluice is given by
the time integral of the expectation value of the current
operator of either of the two SQUIDs. The dynamics is
governed by the Schrödinger equation and the Hamil-
tonian of the device is (in the case of identical junctions)

ĤH �
2e2

2CJ � Cg
�n̂n� ng�

2 � Er
J

�
�
�r

�0

�
cos�� ’=2�

� El
J

�
�
�l

�0

�
cos�’=2��: (1)

Here CJ=2 is the capacitance of a single junction, Cg is the
capacitance of the gate, ng � CgVg=2e is the gate charge
in 2e units, �0 � h=2e, and ’ is the phase difference
over the sluice. Furthermore, Ea

J��
�a

�0
� � Emax

J cos�� �a

�0
�

(a � l; r) denotes the effective flux-dependent signed
Josephson energy of the left and the right SQUID, re-
spectively. The Josephson energy of a single junction is
thus Emax

J =2. The factor EC � �2e2�=�2CJ � Cg� is the
charging energy. The quantum mechanical conjugate var-
iables are the number of Cooper pairs on the island n̂n and
the superconducting phase . They obey the canonical
commutation relation 	n̂n;
 � i. The case of nonidenti-
cal junctions is modeled below by not allowing the
Josephson energy to vanish during the cycle. We note
that it is possible to use more complicated SQUIDs [see
Fig. 1(b)] for which one of the junctions is replaced by a
SQUID biased with a static field to match the EJ of the
other half when �0=2 threads the primary loop. Self-
inductance may be ignored for two junctions (other
sources of error dominate) but for the three-junction
design the self-inductance sets a limit for suppression at
�LIC=�0 where IC � 2�EJ=�0. An achievable value for
this could be 10�3. The current operator of the, say, right
SQUID is

Ir �
2e
�h
Er
J

�
�
�r

�0

�
sin�� ’=2�: (2)

The total charge flowing through the system over one
cycle has two components in the adiabatic limit [7],
namely, the contribution from the dynamical supercur-
rent

Qs �
Z tcycle

0
h0;q�t�jIrj0;q�t�idt; (3)

and the pumped charge (� is the loop in parameter space)

Qp � 2 �h Im

"X
n�0

I
�

h0;qjIrjn;qi
E0�q� � En�q�

hn;qjrqj0;qi  dq

#
:

(4)

We have denoted above the control parameters collec-
tively by the vector q which is varied in time. In the
present context q � �ng; E

r
J; E

l
J�
T . Because of the adiaba-

ticity criterion, the sluice stays at all times in the ground
state with negligible Zener tunneling. The nth eigenstate
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at the point q is denoted by jn;qi and the energy eigen-
value by En�q�.

Figure 2 illustrates a model control-parameter se-
quence. Note that the SQUIDs are biased in such a
manner that one door is always closed, such that the
dynamical contribution of Eq. (3) vanishes. Moreover,
the signal is designed such that the system Hamiltonian
(1) is always nondegenerate. This validates the use of
Eq. (4). Varying just the gate voltage would lead to a
degeneracy at ng � 0:5, but because just one of the doors
is open at this point, the problem is resolved. The sluice is
ideally a switchable Cooper pair box. During the first half
of the sequence one of the SQUIDs works as a Josephson
junction while the other is effectively a capacitor. Then
the roles are exchanged. It is easy to see that this sequence
leads to the transport of exactly one Cooper pair through
the sluice per cycle. In the beginning of the sequence the
system is in the eigenstate of charge (zero pairs) due to the
fact that the effective Josephson couplings are set to zero.
In the middle of the sequence when both doors are again
closed, the island is in the eigenstate of charge but now
with one extra Cooper pair. The Cooper pair has tunneled
through the right SQUID since the left one was closed.
Finally, in the end of pulse the system is again at the
eigenstate of charge with zero Cooper pairs and the
charge must have gone through the left SQUID.
Repeating this sequence results in I � 2ef, where f �
1=tcycle. The form of the pulse may also be generalized for
the purpose of allowing n Cooper pairs to flow through
the sluice over tcycle, thus increasing the current to I �
2nef, simply by operating between ng � 0 and ng � n.

Assuming that the SQUIDs can be closed to a high
degree renders the system almost entirely insensitive to
the actual operating point of voltage. Instead of operating
177003-2
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FIG. 3. Error (a) in the pumped charge over a single period
and (b) in the current as a function of (a) frequency and
(b) current. Here CJ � C, Cg � 0:1C, Emax

J � e2=C, and fJ �
Emax
J = �h. The error is " � 1�QP=2ne � �I=I. The line

marked by diamonds represents pumping a single Cooper
pair, the line marked by circles represents pumping five
Cooper pairs, whereas the squared line represents pumping
ten Cooper pairs per cycle. In (b) we assume fJ �
300� 109 s�1.
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between ng � 0 and ng � 1 (or ng � 0 and ng � n) we
may just as well operate between ng � � and ng � �� 1
(or ng � � and ng � n� �) as long as � � 1

2 . However,
the adiabaticity criterion becomes harder to fulfill if we
start close to the degeneracy point. Considering that a
typical measured power spectrum of the background 1=f
charge noise is S�f� � 10�8e2=f [2,10], there will be a
need to reconfigure the sluice only after time scales of
hours. This is a definite strength of the present approach
and it is attributable to the use of the controllable
SQUIDs. It should be emphasized that the exact shape
of the pulses is not crucially important as long as the
maxima and minima are synchronized as in Fig. 2. Even
though we consider imperfections in suppressing EJ be-
low, the effect of flux noise still needs to be studied in an
experiment.

Let us comment on the maximum operating frequency
of the device. Because of imperfections in the flux control
and nonidentical Josephson junctions, there is always
some residual Eres

J . This implies that one should have
Emax
J <EC to avoid excess leakage and to make the sluice

insensitive to background charge fluctuations. Further-
more, since the minimum gap in the energy spectrum of
the sluice is roughly Emax

J whenever Emax
J � EC holds, one

should have hf � Emax
J . It is often asserted that one

should also have EC � �BCS in order to avoid quasipar-
ticle effects. It follows that there would be an inequality
chain hf � Emax

J <EC � �BCS which seriously limits
the operation frequency of the device. However, it suffices
to have

hf � Emax
J � EC & �BCS (5)

in the present context. Namely, the criterion EC � �BCS

is now superfluous because, assuming adiabaticity, the
sluice is never in its excited state. That is, it is sufficient
to have �BCS such that the second band [11] is just slightly
below the lowest quasiparticle state which cannot be
excited due to adiabaticity. In the case of nonadiabatic
evolution EC � �BCS is, of course, necessary whenever
we consider exciting the system, as in the case of the
Josephson charge qubit [2]. We can also set Emax

J � EC

in Eq. (5) and still get satisfactory performance as we
show below.

We proceed to present numerical results obtained by
integrating the Schrödinger equation corresponding to
the Hamiltonian Eq. (1) over discrete time steps. The
pumped charge was then obtained by numerically inte-
grating the time-dependent expectation value of the cur-
rent operator in Eq. (2). This nonadiabatic method reveals
the effect of the finite operating frequency. We also esti-
mate the effect of several kinds of nonidealities. We
choose for the rest of the paper the typical parameters
CJ � C, Cg � 0:1C, and Emax

J � e2=C such that Emax
J �

EC. Integrating the system at varying frequencies results
in the pumped charge illustrated in Fig. 3. The path of
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integration is the ideal sequence of Fig. 2. In light of Fig. 3,
it seems that we could quite safely pump single Cooper
pairs at the frequency f � Emax

J = �h� 10�3 and still have
an accuracy of 7 ppm. Fabricating the island and the leads
out of aluminum is the most viable option for the present,
and by standard lithography one obtains C< 10�15 fF.
The well known BCS gap would be roughly �BCS=h �
50 GHz. Choosing the charging energy optimally, that is,
EC & �BCS, results in an operating frequency of some
300 MHz and a current of about 0.1 nA. However, Fig. 3
also illustrates the adiabaticity error for pumping five
Cooper pairs; that is, the gate charge pulse has an ampli-
tude of Cg�Vg=2e � 5. When this is converted to current,
we conclude that it may be possible to pump 0.2 nA with
better than 1 ppm error. The result of pumping altogether
ten Cooper pairs per cycle is also shown, and it turns out
that a current of about 0.1 nA at 0.1 ppm error is possible.
Ramps of the Josephson energy cause adiabaticity errors
and, in comparison, varying the gate voltage does not
contribute as much at least when pumping only a few
Cooper pairs. The optimum number of pairs per cycle is
yet an open question which we have not solved due to
numerical difficulties.

The quantitative effect of background charge and the
residual value of EJ, Eres

J , is illustrated in Fig. 4. We
calculated the actual pumped charge, in the case of a
single attempted Cooper pair in Fig. 4(a), over one cycle
as a function of the gate charge deviation � and Eres

J . The
result has been averaged over different evenly spaced
phase bias values, namely, ’ � �=2, �, 3�=2, and 2�
(for justification see below). The frequency was f �
Emax
J = �h� 10�4 which corresponds roughly to 0.1 nA.

The performance of the sluice degrades rapidly with
increasing Eres

J at fixed phase bias values. However, a
physical sample would always be subject to some phase
fluctuations. Keeping the phase constant over one cycle,
as done above, is a realistic assumption if the dephasing
time is long compared to tcycle. We see that the error
177003-3
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FIG. 4. (a) Averaged pumping error over the phase bias
values ’ � �=2, �, 3�=2, and 2� as a function of � and Eres

J
at f � Emax

J = �h� 10�3�� 300 MHz�. (b) The same as (a) but
for pumping five Cooper pairs at f � 4Emax

J = �h� 10�4 �
120 MHz which corresponds to I � 0:2 nA.
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averages out to a great accuracy even though the deviation
from the ideal point (i.e., Eres

J =Emax
J � 0 and � � 0) is

quite large. Note that the span of gate charge is some 10%
and the span of the residual Eres

J some 1%. Achieving even
Eres
J =Emax

J � 10�3 should be possible with the design of
Fig. 1(b). A similar calculation for pumping five Cooper
pairs was also performed at a frequency corresponding to
I � 0:2 nA, and the averaged result is shown in Fig. 4(b).
A yield of at least 0.2 nA is possible even in the presence
of nonidealities with a relative error of some 10�6.

It is easy to see why phase averaging suppresses the
errors when Eres

J � 0 as suggested by Fig. 4. Namely,
the supercurrent is proportional to Er

JE
l
J sin’ [12] and

the average of this is clearly zero. It is identically zero
whenever one of the sluice doors is closed. We obtain in a
two-state adiabatic approximation a perturbative formula
in Eres

J (for pumping a single Cooper pair)

QP

2e
� 1�

2
����������������������������
�Emax

J �2 � E2
C

q
Emax
J EC

Eres
J cos’ (6)

such that we may confirm that the error is proportional to
cos’ as in the conventional pump [7].We have utilized the
fact that QP � �2e d

d’ �, where � is the Berry phase
associated with the adiabatic loop [13]. The effect of �
on the performance of the sluice is negligible compared to
the effect of nonzero Eres

J with fixed ’. Phase averaging,
i.e., placing the sluice in a dissipative environment, may
be used to cancel the effect of small nonidealities.
Figure 4 clearly indicates that the sluice is quite insensi-
tive to background charge fluctuations.

We assumed that choosing the phases evenly is a rep-
resentative sample of the whole. Over time scales of
seconds one may consider the phase to be evenly distrib-
uted between 0 and 2� due to dissipation. The even dis-
tribution is asymptotically identical to a wide Gaussian
distribution on the whole real axis. The Gaussian nature
can be justified by assuming a thermal bath of harmonic
oscillators coupled to the phase with a sufficiently
high effective impedance. The variance of the phase
increases with the real part of the impedance seen by
the device due to the fluctuation-dissipation theorem.
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Thus hexp��i’�i � exp��ih’i � h�’2i=2� decays expo-
nentially as do the pumping errors. Phase averaging has
been used in the R-pump scenarios [6] by inserting large
series resistors. At high currents this leads inevitably to
overheating. In the present context the phase averaging is
needed only as a second order mechanism since most of
the errors are suppressed by the controlled modulation of
the Josephson coupling. Finally, we comment on the
effect of the ammeter. An ammeter with high R can
cause a significant voltage over the sluice. A good choice
would be a cryogenic current comparator modeled by L
and C in parallel. With, e.g., L � 10 H, C � 1 nF, and
Emax
J � EC we would get V�t� � V0 sin�2�ft� with V0 �

e=C� � 50 pV which is negligible.
To conclude, we have introduced and analyzed an idea

of a Cooper pair sluice with just three control parameters.
Compared to other Cooper pair pumping scenarios, we
have suppressed undesired cotunneling, supercurrent
leakage, and, most importantly, the need to have a long
error-prone array of junctions with numerous gates. The
idea for the control of the sluice is similar to the control
of Josephson junction qubits. The sluice is much simpler,
though, since superpositions and entanglement are not
pursued and relatively slow pulses are sufficient.
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