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Origin of Stretched Exponential Relaxation for Hopping-Transport Models

B. Sturman and E. Podivilov
Institute of Automation and Electrometry, Koptyug Ave 1, 630090 Novosibirsk, Russia

M. Gorkunov*
Department of Physics, University of Osnabrück, D-49069 Osnabrück, Germany

(Received 6 April 2003; published 24 October 2003)
176602-1
We propose a novel geometric approach to the description of the relaxation phenomena in complex
condensed-matter systems. It is shown within a fairly general random site hopping model that the
stretched exponential decay law, exp���t=����, originates from the simple and general geometric
features of a random distribution of transport and trapping sites in the 3D space. The value of the
variable stretching index � is determined by the localization radius of hopping electrons. The
possibilities for generalization of the obtained results and interpretation of the relevant experimental
data are discussed.
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It is now widely accepted that the stretched exponential
function, known since the middle of the 19th century as
the Kohlrausch law [1],

n�t� � n�0� exp���t=����; (1)

with the stretching index � ranging from 0 to 1, fits
surprisingly well a great variety of relaxation phenomena
in complex condensed-matter systems; see [2–5] and
references therein. Often, the Kohlrausch law is associ-
ated with the structural relaxation in glasses and poly-
mers [2,4]. However, it is known also for spin and
magnetic glasses [6,7], amorphous silicon [8], and other
systems. Recently, stretched exponential relaxation dis-
tinguished by a variable value of � and a fairly long range
of the relaxation time t was found in LiNbO3:Fe crystals
[9]. This system, in contrast to glasses and polymers, is
expected to obey the established basic concepts of the
solid state theory.

The ubiquitous character of the stretched exponential
relaxation has encouraged theorists to search for micro-
scopic models compatible with Eq. (1). And such models,
which are far from trivial, were found. One of the most
known findings of this kind is the model of hierarchically
constrained dynamics which implies triggering of slower
relaxation processes after completion of faster ones [10].
A number of microscopic lattice models are based on
special assumptions about fractal structure of the me-
dium [11]. An overview of the models based on the idea of
scale-invariant distribution of relaxation times can be
found in [5].

Unfortunately, most of the models of the stretched
relaxation have no clear physical basis. Partially, it is
caused by the absence of a satisfactory theory of the
glassy state. The known models give no clear answer to
the simple and fundamental questions: What and why
make the stretched relaxation so general? What is the
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stretched behavior? The current estimates of the status of
the Kohlrausch law range from ‘‘It is largely a convenient
phenomenological tool without fundamental signifi-
cance’’ [12] to ‘‘It is one of Nature’s best-kept secrets’’ [4].

The main purpose of this Letter is to link the origin
of the stretched exponential behavior with simple and
general geometrical properties inherent in hopping relax-
ation systems. These properties are the subject of sto-
chastic geometry [13]; they are the quintessence of
randomness, which is widely recognized as the com-
mon feature of all complex condensed-matter systems.
Our results do not pretend to cover the whole spectrum of
random systems. They show, however, a new way of how
to treat the stretched exponential relaxation.

The basic model to be studied is not much different
from that considered by many authors. Transport and
trapping sites are distributed randomly in the 3D space
with the concentrations N0 and NT , respectively. Initially,
electrons occupy the transport sites with the same proba-
bility p0 � 1. Further, they walk by hops from site to site
and recombine with the traps. The rate of an elementary
transition process W is expected to be a sharply decreas-
ing function of the hopping distance R. Note that the
randomness naturally appears in the above ‘‘continuous’’
model in contrast to the ‘‘lattice’’ random models; see,
e.g., [11]. A number of statistical properties of randomly
placed dots (of Poisson ensembles) are known within the
probability theory [14]; some special geometric aspects
have been analyzed within the percolation theory [15,16].

Now we formulate the geometrical problem in question.
Consider an arbitrary initial transport site and an arbi-
trary trap. An electron can move from this site to the trap
in many different ways. Each particular way (let us label
it i) can be characterized by the maximum hopping
distance Rmax

i ; see also Fig. 1. By varying i one can
minimize Rmax

i over the ways leading to the chosen trap.
Lastly, by minimizing this value over all traps (the near-
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FIG. 1. Schematic representation of randomly placed sites.
The solid circle shows an initial electron position, the open
circles and solid squares mark the empty transport sites and the
traps, respectively. The arrows show one of the ways leading to
recombination and including the critical hop; this transition is
indicated by the thick arrow.
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certain value of R, which is the absolute minimum among
the maximum hopping distances for the chosen initial
transport site. For an ensemble of the initial transport
sites we have therefore a unique distribution function
F�R�, which is the probability for the mini-max hopping
distance to be equal to R. This function is a quantitative
geometric characteristic of the random distribution of the
transport and trapping sites. It can be introduced for the
space of any dimension. According to the definition,R
1
0 F�R�dR � 1. To the best of our knowledge, the for-

mulated geometrical problem was never considered in the
literature.

It seems difficult to find the ‘‘geometric’’ function F�R�
in analytical form. But some of its features are clear.
Consider the most important case N0 	 NT , when the
trapping events occur, in average, after many hops over
the transport sites. It is evident that F�R� peaks at R
 �RR,
where �RR � �3=4�N0�

1=3 is the characteristic distance be-
tween the transport sites. The asymptotic behavior for
R 	 �RR is determined by those isolated sites that have no
nearest neighbors at the distance smaller than � �RR. In
other words, the function F�R� tends here to the probabil-
ity of having a nearest neighbor at distance R, Fp �
4�R2N0 exp��4�N0R

3=3�. The peak of F�R� is expected
to be sharper than that of Fp�R� and occur at R > �RR.

Why is the introduced geometric function F�R� ex-
pected to be of great importance for the description of
the decay law? We argue that the mini-max distance R
characterizes the bottleneck for the elementary hopping
processes leading to relaxation if the rate W is a sharply
decreasing function of the hopping distance R. This as-
sertion is in line with the experience accumulated during
the studies (analytical, numerical, and experimental) of
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transport phenomena in random infinite media on the
basis of the percolation theory [15,16]. The point is that
there is a great number of ways (for a chosen initial site)
leading to recombination and including a single section
with the critical mini-max distance R; see Fig. 1. The rate
W�R� is minimum (among the elementary rates) for all
these ways. Multiplicity of the ways enhances strongly the
inflow of electrons to and the outflow from the bottleneck.
The number of alternative ways depends essentially on the
space dimension; in the 3D case the bottleneck is more
pronounced than that in the 2D case.

With the concept of the bottleneck accepted, we have
for the decay function f�t�,

f �
Z 1

0
F�R� exp��W�R�t�dR: (2)

This can be regarded as a kind of the parallel channel
model [5] with the relaxation rate spread determined by
the distribution F�R�. According to Eq. (2), f�0� � 1,
f�1� � 0. The decay law depends indeed on the function
W�R�. For electron hopping processes it can convention-
ally be chosen as

W � � exp��2R=a�; (3)

where � is an R-independent factor and a is the localiza-
tion radius of the electron wave function (N0a

3 � 1). An
exponential decrease of the hopping rate W�R� is suffi-
cient for employment of the bottleneck concept [16]; the
smaller a, the better for our theory.

The asymptotic behavior of f�t� for large t is deter-
mined by the shape of F�R� in the limit of large R; it has
been specified above. Accordingly, we have for t ! 1,
f ! exp����=6�N0a

3ln3��t��, which differs from the
Kohlrausch law. Thus our hope is that f�t� is fitted by
Eq. (1) within a long time interval 0< t & t0.

Our further studies are based on numerical simula-
tions. First, using the Monte Carlo method, we have
solved the geometrical part of the problem. Typically,
we chose random coordinates of 1000 transport sites
within a 3D volume. The number of traps (their coordi-
nates were chosen similarly) varied from 25 to 100, i.e.,
the ratio N0=NT ranged from 40 to 10. For a chosen
transport site we calculated the mini-max distance R
using the periodic boundary conditions. By choosing
different initial sites and different realizations of the
site coordinates, we accumulated progressively statistics
of the mini-max distance. It was also made sure that
increasing N0 from 1000 to 3000 (with the same ratio
N0=NT) does not affect the shape of F�R�. This means
that the trapping sites located very far from the nearest
ones are negligible. Increasing ratio N0=NT severely com-
plicated the simulation procedure.

Figure 2 shows our numerical results. The difference
between F�R� and Fp�R� is evident. The larger N0=NT , the
sharper the peak of F�R� and the stronger its shift to the
176602-2
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FIG. 2. The function F�R� for three values of N0=NT ; the
solid lines 1, 2, 3 are plotted for N0=NT � 10; 20; 40 and the
dotted line is the nearest-neighbor distribution Fp�R�. The inset
shows in detail F�R� for large values of R= �RR.
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right. For R > 1:8 �RR the function F�R� is already very
close to Fp�R�; the value of F�R� is very small in this
region. The data of Fig. 2 fit well the percolation theory
[15]. As follows from this theory, the value of Rm corre-
sponding to the maximum of F�R� tends to the critical
radius Rc ’ 1:4 �RR in the limit N0=NT ! 1. The value of
Rm= �RR for curves 1, 2, and 3 is ’ 1:25, 1.32, and 1.36,
respectively; it approaches Rc= �RR from below.

Next, using the data on F�R� and Eqs. (2) and (3), we
have calculated the decay function f�t�. The solid lines 1–
9 in Fig. 3 show numerical results obtained for different
combinations of N0=NT and �RR=a. The dotted lines show
the best fit by the stretched exponential function. This fit
is surprisingly good within the whole range of N0=NT and
during at least 3–5 decades of the relaxation time; the
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FIG. 3. The relaxation function f�t� for several values of the
ratios N0=NT and �RR=a. The chosen parameters are as follows.
1: (N0=NT � 40; �RR=a � 4); 2: �20; 4�; 3: �10; 4�; 4: �40; 3�;
5: �20; 3�; 6: �10; 3�; 7: �40; 2�; 8: �20; 2�; 9: �10; 2�.
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larger �RR=a, the longer the fitting range. The far tail of the
relaxation function does not obey the Kohlrausch law in
accordance with the asymptotic behavior of F�R�. The
crossover to the nonstretched relaxation occurs at very
small values of f�t�.

The value of the index � depends on N0=NT and �RR=a.
The main tendencies of this dependence are clear from
Fig. 4. One sees that the stretching index grows smoothly
with increasing N0=NT and decreases with increasing
ratio �RR=a. The range of variation of � is rather big,
from 0.9 to 0.2. The characteristic time � is proportional
to ��1 and grows exponentially with increasing �RR=a.

Lastly, we have performed direct 3D Monte Carlo
simulations. We followed an electron located initially at
an arbitrary transport site up to its trapping event and
accumulated statistics of the survival time. To accelerate
the calculations, we restricted ourselves to the hops to
several neighboring sites, located not further than 2 �RR
from the current electron position. Nevertheless, the di-
rect simulations were highly time consuming; they could
not be performed in a volume sufficient for a full-scale
comparison with the data of the previous calculations.
The main purpose of these simulations was an examina-
tion of the validity of our geometrical approach.

Figure 5 shows the results obtained for three values of
N0=NT and their fit by the stretched exponential function.
This fit is rather good. Furthermore, the values of the
stretching index � are also in a good agreement with
those obtained earlier; see Fig. 4.

We have shown, therefore, that our geometrical ap-
proach grasps the essence of the relaxation problem and
leads (within the model considered) to the decay function
that is very close to the stretched exponent within several
decades of the relaxation time and a wide range of vari-
able parameters. Being apparently simple, the model used
allows for anomalous diffusion [17] and includes critical
phenomena and multifractal structures [15]. It certainly
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FIG. 4. Dependence of the stretching index � on �RR=a; the
curves 1, 2, and 3 are plotted for N0=NT � 40, 20, and 10. The
solid squares correspond to the direct simulations.
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FIG. 5. The decay law (squares) obtained by the direct simu-
lations for aN1=3

0 � 1=5. The cases 1, 2, and 3 correspond to
N0=NT � 40, 20, and 10. The solid lines are the fit.
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possesses many features generic for relaxation phenom-
ena in complex condensed-matter systems.

Generally, the preexponential factor � in Eq. (3) de-
pends on the temperature T. Quite often, e.g., for the
polaron hopping models [18], � / exp���a=kBT�, where
�a � 10�1 eV is an activation energy. This representation
leads indeed to an activation dependence of the character-
istic time � entering the Kohlrausch law. Such a depen-
dence is detected for electron relaxation in LiNbO3

crystals [9].
Explanation of the temperature dependence of the in-

dex � (its temperature growth is mentioned in [8,9])
requires a generalization of our model. The most chal-
lenging possibility is, probably, taking into account the
influence of the energy difference between the centers on
the jump rate W. The effect of the energy disorder cannot
often be neglected and leads to nontrivial temperature
dependences [16,18]. Within the percolation theory, this
effect can, for certain cases, be treated by a transition
from the 3D to the 4D space; see Chap. 9 of [16]. Possibly,
this idea is applicable to our geometric approach.

It is worth mentioning that our theory explains well the
stretched behavior within a wide interval of the relax-
ation time covering almost the whole range of the relax-
ing quantity, f0 & f�t� � 1 with f0 � 1, which is of
prime importance for experiment. This is a big advantage
over the classic results [19] showing, under certain as-
sumptions, that the far tail of the decay function fol-
lows the Kohlrausch law with the stretching index
� � 3=5; see also [4,11].

Strictly speaking, our model is adequate for electronic
disordered systems. It can hardly be trivially readdressed
to structural and spin glasses. However, it would not be
practical to expect a universal solution to the whole
problem of stretched relaxation. We believe that our geo-
metric approach carries some generic features of relax-
ation phenomena in complex condensed-matter systems.
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It can be useful, in particular, for structural glasses where
heuristic configuration-space models are used to compen-
sate the absence of basic theory.

In conclusion, we have proposed and justified a novel
geometric approach to the description of relaxation phe-
nomena in disordered condensed-matter systems. Within
a rather general continuous random walk model, this
approach has allowed us to establish a close relation
between the geometric properties of randomly distributed
centers and the stretched exponential decay function and
has thus given a new insight into the origin and status of
the Kohlrausch law. Within our model, this law has to be
considered as a highly useful approximation covering the
main body of relaxation times and input parameters.
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