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Quantum Signatures in Laser-Driven Relativistic Multiple Scattering
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The dynamics of an electronic Dirac wave packet evolving under the influence of an ultraintense
laser pulse and an ensemble of highly charged ions is investigated numerically. Special emphasis is
placed on the evolution of quantum signatures from single to multiple scattering events. We quantify the
occurrence of quantum relativistic interference fringes in various situations and stress their significance
in multiple-particle systems, even in the relativistic range of laser-matter interaction.
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linear Dirac Hamiltonian into a position-dependent and a ‘‘growing-grid’’ approach is also our pragmatic solution
The interplay of the strongest forces in atomic physics
via ultraintense laser pulses and highly charged ions is
governed rather well by quantum relativistic Dirac dy-
namics [1–3]. On one hand, for single particles, quantum
effects such as tunneling, spin effects, and quantum in-
terferences were shown to be rather crucial even in the
relativistic regime [4,5]. On the other hand, for many
particle systems, laser-induced plasma physics was
shown to be remarkably well described by classical rela-
tivistic dynamics [6,7]. With the intermediate regime
from few particle to cluster physics attracting increasing
interest [8], the question arises for the role of quantum
effects in laser-induced relativistic multiple-particle
dynamics.

In this Letter, we investigate the quantum relativistic
dynamics of laser-driven multiple scatterings of an elec-
tron being represented by a Volkov wave packet at an
ensemble of highly charged ions. With a numerical accu-
racy, which allows for transitions even to the Dirac sea
with negative energies, we quantify the interference
fringes at each scattering event and the mutual interplay
among those events. Clear quantum behavior in the Dirac
wave packet is identified in the highly relativistic regime
after multiple scattering.

The system of interest consists of an electron which is
driven by an intense laser pulse with time t and space ~rr
dependent vector potential ~AA�t; ~rr� and scattered multiply
at an ensemble of ions with scalar potential A0� ~rr�. The
electronic wave packet dynamics in such an environment
is characterized by the Dirac spinor  �t; ~rr� and is gov-
erned by the Dirac equation reading in atomic units as
throughout the article:
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with electron charge q � �1 a:u:, electron mass m �
1 a:u: and �j (j 2 f1; 2; 3g), and  being the Dirac matri-
ces [9]. The three components of ~rr and ~AA are rj and Aj,
respectively, and c � 137:036 a:u: the speed of light.

Our numerical analysis takes advantage of splitting the
0031-9007=03=91(17)=173202(4)$20.00 
derivative-dependent part. We then make use of the so-
called ‘‘split-operator’’ technique [10], in which we
propagate the wave packet successively by the position-
and derivative-dependent parts and employ fast-Fourier
transformations, such that all operations are plain multi-
plications. With time step 
t, the numerical error in-
troduced this way is of the order of 
t3 [10]. For 
t 	
2
 10�5 a:u: < �h=�2mc2�, transitions between positive-
and negative-energy states are resolved, and this way we
obtained convergence of our split-step propagation of  
even at large t * 10 a:u: Further, the spacing of our two-
dimensional grid in position space needs to be suitable to
resolve the maximal momenta employed. In spite of large
relativistic velocities, this is not problematic, because it is
the canonical rather than the kinetic momentum that has
to be represented on the grid, with ~ppcan �

q
c
~AA � ~ppkin. In

the case of a high velocity of the particle being exclu-
sively due to an intense laser field, ~ppcan is even zero in
polarization direction ~ee2. It is nonzero in propagation
direction ~ee1, but its magnitude is small even for intense
fields. Once scatterings with nuclei have occurred, how-
ever, high canonical momenta appear, which, for the
parameters used here, can be represented successfully
on a grid with a spacing 
xi � 0:118 a:u:, corresponding
to a maximum momentum of 26.6 a.u. The so-called
fermion doubling problem, which occurs at momenta
close to the highest grid momenta, is consequently also
avoided [11].

For the sake of reducing computing power, we intro-
duced two advantageous techniques. First, in position
space, the calculation is restricted to the area centered
around the rapidly moving wave packet, involving a
‘‘moving-grid’’ approach. Second, the grid size, too, is
dynamically adapted in time: While a freely evolving
wave packet spreads with time, a multiply scattered one
does considerably more. As our simulation has to cover a
substantial part of the whole laser pulse, including times
where the packet is still quite small, it is possible to save
considerable CPU time, noting that the time consuming
two-dimensional fast-Fourier transformations scale as
O�N2 logN�, where N 
 N equals the grid size. This
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to the well-known boundary problem [3,12] in Dirac
calculations, at least to the point where damping func-
tions and absorbing boundaries become unavoidable. The
maximally introduced relative loss of normalization of
the wave function, arising solely this way, is limited by
2:5% in our simulations to follow. Finally, the whole code
is written to take advantage of multiple CPUs.

In a series of contour plots, we present the time evolu-
tion of an initially Gaussian shaped wave packet under
the influence of a strong laser pulse, which is subsequently
scattered at several highly charged ions. We use a four
cycle laser pulse with amplitude E0 � 50 a:u: (I �
8:75
 1019 W=cm2) and frequency ! � 1 a:u:, which
features a 1.5 cycle sin2 turn-on and turn-off, and one
cycle of constant intensity in between. As amplitude and
frequency suggest, we are clearly in the fully relativistic
regime. The ions are modeled by static softcore potentials
Ze2=

����������������������������������
��~rr� ~rrIon�

2 � a�
p

, with a ‘‘Coulomb-like’’ small
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FIG. 1. (a) Overview: Contour plots at t � 7:645, 8.195, 9.495, an
shortly after it, at the lower point of return, and after the second
rectangles (some only partly visible) mark the dynamical grid bou
positions of two Sn50� ions, which are located right on the horizon
trajectory of the expectation value of the particle’s spatial coordinat
t � 7:645 a:u:, but provide them for the other three cases as follow
fringes shortly after the scattering event; (c) enlarged view at
somewhat later in order to illustrate the growth of the distance bet
t � 12:095 a:u: which displays interference from two separate scatte
side the unperturbed structure from the first scattering event. In all
within �1:15 � logj j2 � �4.
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softcore parameter a � 0:01 being just large enough to
avoid numerical instabilities at the ions’ origins ~rrIon. We
chose their charge as a high multiple (Z � 50) of the
elementary charge e to acquire comparable field strengths
for laser and ions (at 1 a.u. distance from the ionic center).

In Fig. 1, the top left graph illustrates an overview of
the successive quantum relativistic scattering scenario of
an electron wave packet at two highly charged ions. The
initial Gaussian wave packet (full width 2 a.u. in momen-
tum space at 1=eth of the maximal height, and solely with
positive energy and spin up with respect to ~ee1 
 ~ee2) is
centered around the origin and its evolution is depicted by
various snap shots along its center of mass motion (solid
line) in the laser pulse. At first, after a short motion in the
negative polarization and positive propagation directions
during the first half cycle of the turn-on phase, the
particle is visibly accelerated in the polarization direc-
tion, reaching the first upper turning point after the first
40353025201510
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d 12.095 a.u. corresponding to times before the first scattering,
scattering, close to the upper point of return. The four dashed
ndaries for each of these situations. The thick dots indicate the
tal axis at positions 16.5 and 30.0 a.u. The solid line depicts the
e. We omit any enlarged view of the initially Gaussian packet at
s: (b) enlarged view at t � 8:195 a:u: showing single scattering
t � 9:495 a:u: that depicts the same single scattering fringes
ween any two fringes [compare with (b)]; (d) enlarged view at
ring events with crossed fringes on the left side and on the right
cases, 20 contour lines are shown for j j2 with constant steps
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whole cycle is completed. Further on, continuing with a
clear Lorentz-force induced drift in the laser propagation
direction, the electron wave packet is accelerated in the
negative polarization direction to face its first encounter
with an ionic core potential. The motion that we observe
during the first unperturbed 1 1

4 cycles could be modeled
rather accurately and easily with a classical Monte Carlo
ensemble and is completely in agreement with known
free (without nucleus) quantum wave packet results in
[13]. This includes the Lorentz contraction of the wave
packet along the direction of present velocity and its
apparent rotation, i.e., precisely shearing, because of the
phase differences sensed by spatially separated parts of
the wave packet.

At the first encounter of the electron wave packet with
the nucleus at position (16.5,0), the laser electric field is
rather small at this particular phase. Therefore relativistic
Coulomb scattering dominates, involving the interference
of the incoming wave with the scattered wave. The cor-
responding fringe structure, which features a distinct
maximum in the forward direction followed by a series
of side maxima, can be viewed in detail in Fig. 1(b).
Further fringes from a scattering at the second ion at
(30,0) are also visible. The small oscillations present
numerical noise: As opposed to the much higher quantum
interference structures in the logarithmic plot, they vary
with increasing spatial grid sizes. The probability for the
negative-energy states, which are almost purely in the
continuum, is clearly enhanced during the scattering,
remains though still well below 5% then and afterwards.
Relative deviations due to the spin degree of freedom
increase up to ca. 10�5 at the scattering event for our
parameters. This can be estimated by relating the spin-
orbit energies to the total system energy and by redoing
the calculations in Fig. 1 with spin-down polarization
initially. With increasing time, the wave packet evolves
in the negative polarization direction towards the second
lower turning point, which is reached after 1.5 cycles. The
separations among the fringes have grown substantially
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FIG. 2. (a) Overview: Contour plots at time t � 12:270 a:u: after
centered symmetrically around a further one at position (0,30) a.u. T
depicts the trajectory of the expectation value of the electron’s sp
(a) illustrates how the two scattering events at seven ions modify
contour lines are shown for j j2 with constant steps within �1:15
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which themselves turn continuously more parallel, with
an orientation reflecting the direction of motion at the
time when the scattering occurred [Fig. 1(c)].

Finally, the wave packet, which at this stage is split into
various fractions, continues in the positive polarization
direction. The fringes maintain their orientation when the
second scattering at the second ion occurs, and are there-
fore joined by a set of newly created fringes with a
different orientation. When two cycles are completed,
the electron has reached its second upper turning point.
Figure 1(d) is a snapshot taken a little while before that,
and one can clearly see the pattern that is generated by
two sets of differently oriented interference fringes. From
then on, without further scatterings, the whole structure
essentially remains, apart from further changes imposed
by the laser field such as spreading and shearing with an
essentially classical center-of-mass motion.

In Fig. 2, we show in a similar way the effect on the
same initially Gaussian wave packet after it has passed a
collection of seven ions two times. A classical estimation
confirms that such a collection of heavy highly charged
ions moves less than 0.04 a.u. due to Coulomb repulsion
and the laser field during maximally employed interac-
tion time of 
t 	 12 a:u: and may thus be assumed as
resting. We note that the clear interference structures in
single and double scattering are now less apparent though
still visible when one moves to complex structures.

A simple analytical model is finally introduced to
qualitatively confirm our numerical result. Adopting the
existing textbook [14] theory for three-dimensional
Dirac scattering of an electron  at the time-independent
potential of an ion at ~rrIon � ~00, we obtain

 � ~rr� � ��~rr� �
Z
d3r0G0� ~rr; ~rr0; E�V� ~rr0� � ~rr0�; (2)

with unperturbed Dirac wave �� ~rr� � w"� ~pp�e�i= �h� ~pp� ~rr (" 2
f1; 2g depending on spin), corresponding eigenvalue E ,
and w"� ~pp� being the free-electron spinor amplitude [9].
On the right-hand side of Eq. (2), we replace  by � (first
908070605040

propagation direction [a.u.]

two scatterings at an ensemble of six Sn50� ions (thick dots)
he dashed rectangle marks the grid boundary and the solid line

atial coordinate. (b) This enlarged view of the wave packet in
the regularity in the interference pattern. In both graphs, 20
� logj j2 � �4.
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Born approximation) and insert the relativistic free-
particle Green’s function at energy E [14]:

G0� ~rr; ~rr0; E� �
1

�hc
�c ~�� � ~pp� mc2 � E�

e�i= �h�pR

4$R
; (3)

where R � j ~rr� ~rr0j, p �
����������������������������������
�E2=c2� � �mc�2

p
, ~pp � �i �h ~rr,

~pp is the initial momentum, ~pp0 � �p~rr�=r is the final mo-
mentum, and p � �hk � j ~ppj � j ~pp0j its magnitude. For the
case of interest r� r0, neglecting contributions of order
1=r2 and higher, and assuming a short-range potential,
one finally obtains the outgoing electronic wave function:

 � ~rr� �w"� ~pp�e�i= �h� ~pp�~rr

�
1

4$� �hc�2
� ~�� � ~pp0 � mc2 � E� ~pp02��

e�i= �h�pj~rrj

j ~rrj



Z
d3r0 V�~rr0�w"� ~pp�e�i= �h�� ~pp� ~pp0��~rr0 : (4)

We are interested in the maxima of j j2 �  y , or more
exactly in the angles #n that point towards the scattering
fringes. Using V� ~rr0� � �V0(� ~rr0� [15] with V0 > 0 as the
simplest potential, we finally obtain, up to an additive
function f�r� and a constant prefactor, the #-dependent
part of j j2 as

j j2/��+2�1�cos#�1�+2�cos�kr�krcos#��f�r�:

(5)

In the nonrelativistic case + � E=�mc2� 	 1, the maxima
of the above expression can be simplified further to read

#n � � arccos

�
1�

n$
kr

�
; n 2 N: (6)

Then to adapt the dynamics in the laser fields, one may
choose for a fixed initial momentum �hk a distance r
where, in the absence of a laser field, the scattering
fringes would be observed and calculate the correspond-
ing angles #n. Then with the laser field and using a
classical formula [16] and now neglecting the ionic po-
tentials, one may propagate over a period t � �mr�=� �hk� a
suitably chosen ensemble of classical particles that ini-
tially starts at the position of the scattering center with
initial momenta of magnitude �hk in the direction of the
scattering angles #n. This simple model qualitatively
confirms our numerical results while it fails to predict
the final positions and separations of the fringes by better
than a factor of 2. In addition to the stressed approxima-
tions in the analytical approach, the mimicking of the
quantum wave packet in the transition regime from scat-
tering to free dynamics in the laser field is too delicate to
compete seriously in accuracy with the fully quantum
relativistic approach.
173202-4
In conclusion, the investigated multiple-particle sys-
tem shows that there is an intermediate regime in the
number of involved particles with clear quantum relativ-
istic effects. While restrictions for multiple-particle clas-
sical relativistic calculations are pointed out, our results
are of likely significance also for future experiments on
laser-driven relativistic few-body and cluster dynamics.
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