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Connection between the Elastic GEp=GMp and P ! � Form Factors
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It is suggested that the falloff in Q2 of the P ! � magnetic form factor G�
M is related to the recently

observed falloff of the elastic electric form factor GEp=GMp. Calculation is carried out in the
framework of a generalized parton distribution model whose parameters are determined by fitting
the elastic form factors F1p and F2p and isospin symmetry. When applied to the P ! � transition with
no additional parameters, the shape of G�

M is found to exhibit the requisite falloff with Q2.
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2G�
C �

�1
HC�x; t� dx; (5) power components added in Ref. [12]. The conditions at

t � 0 are Hp�x; 0� � eufup�x� 	 edfdp�x� and Ep�x; 0� �
The P ! ��1232� form factor G�
M exhibits a more

rapid decrease with respect to Q2 than is typically ob-
served in other baryons [1,2] such as GMp in elastic
scattering from a proton, or A1=2 in the transition P !
S11�1535�. A recent Jefferson Laboratory (JLab) mea-
surement [3] finds that the ratio GEp=GMp for elastic
scattering falls with Q2 more rapidly than previously
expected. This has given rise to much theoretical activity
[4,5] to attempt to understand the underlying physics. In
this Letter, it is suggested that this behavior in GEp=GMp
is related to that of G�

M.
As a basis, it is assumed that the form factor is domi-

nated by soft mechanisms, and a generalized parton dis-
tribution (GPD)-handbag approach [6–8] is utilized.
Form factors are the zeroth moments of the GPDs with
skewedness � � 0. For elastic scattering from a proton,
with t � �Q2, the Dirac and Pauli form factors are
written

F1p�t� �
Z 1

�1

X
q

eqH
q
p�x; �; t� dx; (1)

F2p�t� �
Z 1

�1

X
q

eqE
q
p�x; �; t� dx; (2)

where q signifies quark flavors, and for brevity the
GPDs are denoted Hq

p�x; t� � Hq
p�x; 0; t� and Eq

p�x; t� �
Eq
p�x; 0; t�.
A similar relation holds for neutrons.
Resonance transition form factors access components

of the GPDs which are not accessed in elastic scattering.
The N ! � form factors, in the large Nc limit, are related
to isovector components of the GPDs [9,10]:
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Z 1

�1
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HE�x; t� dx; (4)
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where G�
M, G�

E, and G�
C are magnetic, electric, and

Coulomb transition form factors [11], and HM, HE, and
HC are the respective isovector GPDs. Analogous rela-
tionships can be obtained for the N ! S11 and other
transitions. Here, the connection between GPDs involved
in the elastic and N ! � form factors is explored to
obtain the connection between the t dependence of the
GEp and G�

M.
In Refs. [9,10], it is noted that, in the large Nc limit,

assuming chiral and isospin symmetry the GPDs for the
P ! ��1232� transition are expected to be isovector
components of the elastic GPDs, given by

HMp �
2���
3

p E�IV�
M �

2���
3

p �Eu
p � Ed

p�: (6)

where IV denotes isovector, and Eu
p and Ed

p are the GPDs
for the proton elastic u and d quarks, respectively. Thus,
the P ! � form factor should be obtainable by analysis of
the Pauli form factor F2p [Eq. (2)]. The Dirac and Pauli
form factors, F1p and F2p, are related to the measured
Sachs form factors GMp and GEp by

F1P �
1

�	 1
��GMp 	GEp�; (7)

F2P �
1

���	 1�
�GMp �GEp�; (8)

with � � �t=4Mp. To obtain Eu
p and Ed

p needed for
Eq. (6), the available data for GMp and the recent JLab
data [3] on GEp=GMp were fit, as reported in Ref. [12],
using a parametrization of the GPDs such as in [13–16].

The specific functional form for Hq
P�x; t� and Eq

P�x; t�
is a Gaussian plus small power law shape in �t to ac-
count for the high measured form factors at very high
�t�� Q2�.

Hq
P�x; t� � fqp�x� exp� 
xxt=4x�2

H� 	 
 
 
 (9)

Eq
P�x; t� � kqp�x� exp� 
xxt=4x�2

E� 	 
 
 
 ; (10)

in which 
xx � 1� x and 
 
 
 indicates the addition of small
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FIG. 1. The Dirac form factor F1p�Q
2� relative to the dipole

GD � 1=�1	Q2=0:71�2. The data are extracted using the
recent JLab data [3] for GEp=GMp, and a recent reevaluation
[19] of SLAC data of GMp [20,21]. The curve is the result of the
fit as discussed in the text.

FIG. 2. The Pauli form factor F2=1:79FD relative to the di-
pole FD � 1=�1	Q2=0:71�2. The data are extracted using the
recent JLab data [3] for F2p=F1p, multiplied by the fit curve for
F1p=FD shown in Fig. 1. The curve is the result of the simul-
taneous fit to the GEp=GMp and GMp data as discussed in the
text and Fig. 1.

FIG. 3. The N ! � magnetic form factor G�
M�Q

2�=3GD rela-
tive to the dipole GD � 1=�1	Q2=0:71�2. The data are a
compendium of world data by Ref. [22]. The curve is the result
of the procedures discussed in the text.
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eukup�x� 	 edkdp�x�. Here, fup�x� and fdp�x� are proton u and
d valence quark distribution functions evaluated from
deep inelastic scattering (DIS) [13,17]. The functions
kup�x� and kdp�x� are not obtainable from evaluations of
DIS. In Refs. [15,18], the assumptions were made that
kqp�x� � c�x; k?�f

q
p�x�, where c�x; k?� are phenomenolog-

ically chosen to yield the t dependence of the ratios
F2p=F1p constrained by recent experimental data from
JLab [3]. For the present purposes kqp�x� /

������������
1� x

p
fqp�x�

was used. This results in a satisfactory ratio of F2p=F1p,
since for large �t the quantity

������������
1� x

p
! 1=

������
�t

p
� 1=Q.

The normalizations were obtained by requiring the pro-
ton and neutron form factors to have their known values
near Q2 � 0, that is, F1p�0� � 1, F1n�0� � 0, F2p�0� �
1:79, F2n�0� � �1:91, and to obey isospin symmetry.
Thus,

F1p�0� � 2eu 	 1ed � 1; F1n�0� � 1eu 	 2ed � 0;

with Z
fu�x� dx � 2;

Z
fd�x� dx � 1;

and

F2p�0� � eu�u 	 ed�d � 1:79;

F2n�0� � eu�
d 	 ed�

u � �1:91;

with

�u �
Z

ku�x� dx � 1:67; �d �
Z

kd�x� dx � �2:03:

Adequate fits to GMp and GEp=GMp, or equivalently
F1p and F2p=F1p, were obtained with �H � 0:76 GeV=c
and �E � 0:67 GeV=c. The results are shown in Figs. 1
and 2.
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The resulting Eu
p and Ed

p were inserted into Eq. (6) to
obtain an estimate for G�

M. At Q2 � 0, one gets G�
M�0� �

2:14, which is somewhat lower than the experimental
value of G�

M�0� 
 3. Such a disagreement is not surprising
[9,10] given the very approximate nature of Eq. (6). The
obtained G�

M was overall renormalized to take this ratio
into account, and the result is shown in Fig. 3.

The similar shapes of the curves in Figs. 2 and 3 can be
ascribed to their connection via Eq. (6). This can be
understood by the observation that F2 is nearly all iso-
vector spin flip, as is the G�

M. However, the inherent
approximate nature of the 1=Nc expansion, and the fact
that F1 also has an isovector component would make the
172303-2
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observed non-negligible differences in the normalization
not surprising.

Although this note suggests a common physical origin
in the Q2 behavior of GEp=GMp and G�

M, a complete
understanding will require theoretical treatments based
on rigorous and consistent relativistic treatment which are
beyond the scope of this communication.
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