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We describe the generalization of Wilson’s numerical renormalization group method to quantum
impurity models with a bosonic bath, providing a general nonperturbative approach to bosonic impurity
models which can access exponentially small energies and temperatures. As an application, we consider
the spin-boson model, describing a two-level system coupled to a bosonic bath with power-law spectral
density, J�!� / !s. We find clear evidence for a line of continuous quantum phase transitions for sub-
Ohmic bath exponents 0< s< 1; the line terminates in the well-known Kosterlitz-Thouless transition
at s � 1. Contact is made with results from perturbative renormalization group, and various other
applications are outlined.
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where the dimensionless parameter � characterizes the characterizes the dispersion of a bosonic bath in a
The numerical renormalization group method (NRG)
developed by Wilson [1] is a powerful tool for the inves-
tigation of the Kondo model and its generalizations [1–4].
In these models, a (possibly complex) impurity, such as a
localized spin, couples to a fermionic bath. In the case of
a spin- 12 impurity coupled antiferromagnetically to a
metallic bath, the impurity spin is screened below a
characteristic scale TK, the Kondo temperature [3]. The
strength of the NRG lies in its nonperturbative nature and
the ability to resolve arbitrarily small energies [1]. A
variety of thermodynamic and dynamic quantities can
be calculated for a large number of impurity models in
the whole parameter space [4,5].

There is, however, a very important class of models for
which the NRG method has not yet been developed:
models with a coupling of the impurity to a bosonic
bath [6]. The intensively studied spin-boson model [7,8]
belongs to this class; its Hamiltonian is given by
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Here the Pauli matrices �j describe a spin, i.e., a generic
two-level system, which is linearly coupled to a bath of
harmonic oscillators, with creation (annihilation) opera-
tors ayi (ai). The bare tunneling amplitude between the
two spin states j"i and j#i is given by �, and 
 is an
additional bias. The !i are the oscillator frequencies and
�i the coupling strengths between the oscillators and the
local spin. The coupling between spin and bosonic bath is
completely specified by the bath spectral function

J�!� � �
X
i

�2i ��!�!i�: (2)

Of particular interest are power-law spectra

J�!� � 2��!1�s
c !s; 0<!<!c; s >�1; (3)
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dissipation strength, and !c is a cutoff energy. The value
s � 1 corresponds to the case of Ohmic dissipation.

The spin-boson model is a generic model describing
quantum dissipation; it has been discussed in the context
of a great variety of physical problems [7,8] ranging from
the effect of friction on the electron transfer in biomole-
cules [9] to the description of the quantum entanglement
between a qubit and its environment [10–12].

Considering the wealth of applications, the question
arises whether Wilson’s NRG method can be exploited for
this class of models; and it is the purpose of this Letter to
show that this is indeed the case. What we have in mind
here is the direct mapping of models like (1) to a semi-
infinite chain form typical for the NRG [1]. As described
below, bosonic operators constitute the sites of the chain,
and the Hamiltonian is solved by iterative numerical
diagonalization [13]. This approach is different from
previous NRG calculations in Refs. [10,14], where the
mapping of the spin-boson model (1) to the anisotropic
fermionic Kondo model was employed — such a mapping
is restricted to the Ohmic case J�!� / !.

Bosonic NRG.—Let us now describe the generalization
of the NRG method to a bosonic bath with a continuous
spectrum. The strategy is similar to the one used for the
Kondo or single-impurity Anderson model [1,2]. There
are, however, important differences which we outline
here; a more detailed discussion will appear elsewhere.
Here we present explicit equations for the spin-boson
model (1); the generalization to other impurity models
or multiple bosonic baths is straightforward.

We start from the following form of the model (1):

H � Hloc �
Z 1

0
d"g�"�ay"a" �

�z
2

Z 1

0
d"h�"��a" � ay" �;

(4)

with Hloc � ���x=2� 
�z=2. In this model, g�"�
2003 The American Physical Society 170601-1



P H Y S I C A L R E V I E W L E T T E R S week ending
24 OCTOBER 2003VOLUME 91, NUMBER 17
one-dimensional representation, with upper cutoff 1 for
". The coupling between the spin and the bosonic bath is
given by h�"�. These two energy-dependent functions are
related to the spectral function J�!� via

1

�
J�x� �

d"�x�
dx

h2�"�x�; x 2 �0; !c ; (5)

where "�x� is the inverse function of g�x�, g�"�x� � x. As
discussed in Ref. [15] for the Anderson model, Eq. (5)
does not uniquely determine g�x� and h�x�, and a specific
choice for h�x� is used to simplify the calculations.

The NRG procedure starts by dividing the energy
interval �0; 1 into intervals ����n�1�;��n (n �
0; 1; 2; . . . ). An orthonormal set of functions  np�"� /
ei!np" is introduced for each interval so that the operators
a" can be represented in this basis. Choosing h�"� as
constant in each interval [15] and dropping the �p � 0�
components as in [1,2], the Hamiltonian of the spin-
boson model then takes the following form:

H � Hloc �
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(6)

The transformation to a semi-infinite chain form yields
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nbn�1 � byn�1bn�; (7)

with "0 �
R
dxJ�x�. The spin now couples to the first site

of the bosonic chain only, and the remaining part of the
chain is characterized by on-site energies 
n and hopping
parameters tn. The parameters "0, 
n, and tn can be cal-
culated numerically from a given spectral function J�!�
[15]. Note that here the spectrum is restricted to positive
frequencies; this results in hopping matrix elements fall-
ing off as tn / ��n (which allows one to work with � � 2
while keeping a relatively small number of states), in
contrast to the fermionic case where the discretization
is performed for both negative and positive energies, in
this case tn / ��n=2. The on-site energies also fall off as

n / ��n so that a fixed but s-dependent ratio tn=
n
emerges for large n, where s is the bath exponent in (3).

The Hamiltonian (7) is solved by iterative numerical
diagonalization [1,2]. At each step, one bosonic site of the
chain is added. The infinite bosonic Hilbert space has to
be cut off, by restricting the basis of each new bosonic site
to a finite number of states Nb. After diagonalizing the
enhanced cluster, theNs lowest lying many-particle states
are kept, and the procedure is repeated [16]. The calcu-
lation of static and dynamic observables can be done in
170601-2
analogy to the fermionic NRG. In general, and as known
from the fermionic case, the accuracy of the cutoff pro-
cedure has to be tested for each application, and we will
show results below.

Application to the spin-boson model.—To investigate
the feasibility of the bosonic NRG, we performed exten-
sive calculations for the spin-boson model with bath
exponents 0< s � 1, bias 
 � 0, and !c � 1. In the
Ohmic case s � 1, it is known that a Kosterlitz-
Thouless quantum transition separates a localized phase
at� � �c from a delocalized phase at�< �c [7,8]. In the
localized regime, the tunnel splitting between the two
levels renormalizes to zero, whereas it is finite in the
delocalized phase. For � � !c the transition occurs at
�c � 1.

The sub-Ohmic case [11,17] is less clear. For �=!c!0
the system is localized for any nonzero coupling; how-
ever, the behavior at finite � was not discussed in
Refs. [7,8]. For large � a delocalized phase was argued
to exist [17,18], and Ref. [17] proposed a first-order tran-
sition scenario. In the following, we will resolve this issue
and show that a continuous transition with associated
critical behavior occurs for all 0< s < 1.

Notably, the spin-boson model can be mapped onto a
one-dimensional Ising model with long-range couplings
falling off as r�s�1; the localized phase of the spin-boson
model then corresponds to the ordered phase of the Ising
magnet [7]. As shown by Dyson [19], this Ising model
features a transition for 0< s � 1, but the results for
s < 1 have not been systematically carried over to the
spin-boson model thus far.

Our NRG calculations provide clear evidence for a
phase transition in the spin-boson model for all 0<
s � 1, which is continuous for 0< s< 1 and of
Kosterlitz-Thouless type for s � 1. The numerical results
are summarized in Fig. 1(a), which shows the phase
boundaries determined from the NRG flow for fixed
NRG parameters � � 2, Nb � 8, and Ns � 100 [16].
(No transition occurs for s > 1: the system is always
delocalized.) As displayed in Fig. 1(b), the critical cou-
pling �c closely follows a power law as a function of the
bare tunnel splitting, �c / �x for small �, with an
s-dependent exponent x. Our data are consistent with
x � 1� s; see below.

In the Ohmic case, s � 1, the critical �c approaches a
finite value as � ! 0. For the quoted NRG parameters we
find �c � 1:18, being slightly larger than the established
value �c�s � 1;� ! 0� � 1. This deviation is solely due
to the NRG discretization; calculations with different �
show that in the limit � ! 1 we recover �c � 1. The
general behavior is illustrated in Fig. 2, which shows �c
for fixed � and s � 0:9. Keeping � fixed, we observe a
rapid convergence of �c with increasing Nb and Ns. As
expected from the iterative diagonalization scheme, the
values of Nb and Ns necessary for convergence increase
with decreasing � [16]. The converged data for �c���
170601-2
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FIG. 1. (a) Phase diagram for the transition between delocal-
ized (�< �c) and localized phases (� > �c) of the spin-boson
model (1) for bias 
 � 0 and various values of �, deduced from
the NRG flow. (b) � dependence of the critical coupling �c for
various values of the bath exponent s. The dashed lines are
guides to the eye; the solid lines are fits to Eq. (10) using the
�< 10�7 points only. For s close to 1 the asymptotic regime is
reached only for very small �. NRG parameters here and in
Figs. 3–5 are � � 2, Nb � 8, and Ns � 100.
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show a linear � dependence in the range 1:8<�< 3,
with a deviation of about 15% at � � 2 from the extrapo-
lated � ! 1 value. The same holds for the Ohmic case
(data not shown) and the extrapolation results in
�c�s � 1;� � 10�4;� ! 1� � 0:99� 0:02; our data are
consistent with the renormalization group (RG) result
�c � 1�O��=!c� [7].

The NRG flow of the many-particle levels of the
Hamiltonian, displayed in Fig. 3, can be used to analyze
the low-temperature behavior. For all values of 0< s < 1,
we can identify two stable fixed points, corresponding to
the localized and delocalized phases of the impurity spin,
and a third NRG fixed point, which is infrared unstable
and corresponds to a critical fixed point. In contrast, for
s � 1 we find (in addition to the delocalized fixed point)
a line of fixed points for � � �c, and no critical fixed
point, as expected for a Kosterlitz-Thouless transition.

The energy scale T�, describing the crossover from the
critical to a stable fixed point, is shown in Fig. 4. For 0<
s < 1, T� is found to vary in a power-law fashion with the
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FIG. 2. � dependence of the critical coupling �c at s � 0:9,
� � 10�3, for various NRG parameters Ns and Nb [16]. The
dashed line is a linear fit to the Ns � 120, Nb � 8 data in the
range 2 � � � 3.
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distance from criticality, T� / j�� �cj
'z, where we have

introduced the correlation length and dynamical expo-
nents ' and z; note that 1=�'z� is nothing but the scaling
dimension of the leading relevant operator at the critical
fixed point. Figure 4(a) nicely shows that 'z is indepen-
dent of � for fixed s, further supporting the existence of a
continuous quantum phase transition with universal be-
havior. In the Ohmic case s � 1, T� varies exponentially
with the distance from the critical coupling, lnT� /
1=��c � ��, as expected [Fig. 4(b)].

In Fig. 5(a) we show the s dependence of the exponent
'z. We find a divergence for both s! 0 and s! 1, con-
sistent with a Kosterlitz-Thouless transition at s � 1, and
the system being always localized at s � 0. The s! 1
divergence is in good agreement with the perturbative
result (9); see below.

The NRG algorithm can be used to compute a variety
of static and dynamic observables. As an example, we
show C�!�, being the Fourier transform of the symme-
trized autocorrelation function C�t� � 1

2 h��z�t�; �z�i, in
Fig. 5(b) for s � 0:6 and parameters in the delocalized
phase close to the transition. We observe a crossover from
C�!� / !s at small frequencies, characteristic of the
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power-law fits, (b) Ohmic case s � 1, with exponential fits.
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delocalized phase [17,20], to a quantum critical behavior
with a power-law divergence at higher frequencies — this
gives rise to a characteristic peak at !� T�.

Comparison to perturbative results.—The partition
function of the spin-boson model can be approximately
represented as that of a one-dimensional Ising model with
couplings falling off as r�s�1; in this picture, defects in
the Ising system correspond to spin flips of the original
spin along the imaginary time axis. A RG analysis of this
Ising model has been performed by Kosterlitz [21].
Carrying over these results to the spin-boson model, we
arrive at the RG equations (see also Ref. [11]),

*��� � ��� ���2 � s� 1�; *� ���� � ����1� ��; (8)

valid for small ���, where ��� � �=!c is the dimensionless
tunneling strength. The RG flow is sketched in Fig. 1 of
Ref. [21]. For s � 1, these equations are equivalent to the
ones known from the anisotropic Kondo model, and de-
scribe a Kosterlitz-Thouless transition, with a fixed point
line ��� � 0, � � 1. For s < 1 there is an unstable fixed
point at � � 1, ���2 � 1� s; clearly it is perturbatively
accessible for small values of �1� s� only. The critical
fixed point is characterized by

'z � 1=
������������������
2�1� s�

p
�O�1�: (9)

For small �, ���, Eq. (8) yields for the phase boundary

�c / �1�s for � � !c; (10)

valid for all 0< s< 1. The results (9) and (10) are in good
agreement with our numerical data in Figs. 5(a) and 1(b),
respectively.

Conclusions.—We have presented a generalization of
Wilson’s NRG to quantum impurity problems with bo-
sonic baths. Applying this novel technique to the sub-
Ohmic spin-boson model, we have found a line of
continuous boundary quantum phase transitions for all
0< s< 1, with exponents varying as a function of s.
This line terminates in a Kosterlitz-Thouless transition
point at s � 1. Near s � 1, our numerical results are
170601-4
in agreement with perturbative calculations. The exis-
tence of a transition for s < 1 implies that weakly
damped coherent dynamics is possible for qubits coupled
to a sub-Ohmic bath, provided that the initial splitting �
is large.

In close analogy to the fermionic NRG, our method
can be easily applied to the calculation of dynamical
quantities. Furthermore, generalizations to impurities
with multiple bosonic baths or both fermionic and bo-
sonic baths are possible. This will allow the study of large
classes of impurity models, e.g., so-called Bose-Kondo
and Bose-Fermi-Kondo models.
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