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Coulomb and Liquid Dimer Models in Three Dimensions
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We study classical hard-core dimer models on three-dimensional lattices using analytical approaches
and Monte Carlo simulations. On the bipartite cubic lattice, a local gauge field generalization of the
height representation used on the square lattice predicts that the dimers are in a critical Coulomb phase
with algebraic, dipolar correlations, in excellent agreement with our large-scale Monte Carlo simula-
tions. The nonbipartite fcc and Fisher lattices lack such a representation, and we find that these models
have both confined and exponentially deconfined but no critical phases. We conjecture that extended
critical phases are realized only on bipartite lattices, even in higher dimensions.

DOI: 10.1103/PhysRevLett.91.167004 PACS numbers: 74.20.Mn, 05.50.+q, 75.10.Hk, 75.10.Jm
In this Letter we generalize the height representation to
three dimensions.We show that dimer models on bipartite

For close-packed dimers the lattice divergence of the field
B vanishes,

P
iBi�x� � Bi�x� ei� � 0; i.e., B is a lattice
The statistical mechanics of dimers on a lattice that
interact with one another only via hard-core exclusion
has long been of interest to mathematicians and physicists
[1,2]. It is one of the simplest models describing the
arrangement of anisotropic objects on a regular substrate.
Applications [3] range from diatomic molecules on sur-
faces to spin ice in a magnetic field [4].

By Kasteleyn’s theorem, on two-dimensional (2D) pla-
nar lattices, the statistical mechanics of (close-packed)
dimer coverings can be computed exactly [5]. A consis-
tent picture has emerged from this work for a large class
of 2D dimer models. On bipartite 2D lattices, dimer
models are in confined phases in which the free energy
of two inserted test monomers (unpaired sites) increases
with separation. The increase is logarithmic for phases
with algebraic dimer correlations and linear for the re-
maining ones. An example of the former is the square
lattice [5,6] and one of the latter is the exotic diamond-
octagon ‘‘4-8’’ lattice which exhibits two confining
phases as the strength of the diamond bonds is varied
[3]. By contrast, nonbipartite lattices exhibit both decon-
fined and confined phases but always with exponentially
decaying dimer correlations except at the boundary be-
tween such phases. Examples are the triangular [7,8] and
kagome [9] lattices, which are deconfined with exponen-
tially decaying correlations, and the Fisher lattice —
equivalent to the 2D Ising model [10]—which exhibits
a deconfinement transition [11].

Dimer models on two-dimensional bipartite lattices
can also be understood through their height representa-
tions [12,13]. Within this powerful framework, the two
subcategories of critical and noncritical dimer correla-
tions are described as ‘‘rough’’ and ‘‘flat’’ phases. In either
case the defect interaction corresponding to the monomer
free energy is long ranged. Dimer models on nonbipartite
lattices lack a similar long-wavelength description.
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3D lattices admit a local gauge representation which
results in a ‘‘Coulomb’’ phase with algebraic, dipolar
forms for the dimer correlations and monomer interac-
tions that fall off inversely with their separation. We
present large-scale Monte Carlo simulations on 3D latti-
ces and demonstrate that the dimer model on the cubic
lattice is critical. On nonbipartite lattices we show that
there exist both confined and deconfined phases, with
exponentially decaying dimer correlations and monomer
interactions, finding that the face-centered cubic (fcc)
lattice and the 3D Fisher lattice realize these cases.
As will be discussed elsewhere, the Coulomb and
liquid phases can be identified with the U(1) and Z2

deconfined phases [14] in the corresponding quantum
dimer models [15].

We first report our results on the cubic lattice along
with the gauge representation. Thereafter we consider the
fcc and Fisher lattices and conclude with a summary and
some conjectures on related models.

Cubic lattice.—Generally, for any dimer configuration,
we define dimer numbers n�x� as ni�x� � 1 if the bond
between sites x and x� ei is occupied, and zero other-
wise (ei is the unit vector in direction i). Close-
packed hard-core dimers obey the condition

P
ini�x� �

ni�x� ei� � 1.
On a bipartite lattice, each dimer touches one site on

each sublattice (cf. Fig. 1, where the two sublattices are
indicated by light and dark dots). Using a sublattice sign
factor �x � �1 depending on whether the site x belongs
to one or the other sublattice, we can now define a field
variable on each link

Bi�x� � �x�ni�x� � z�1� (1)

(where z is the coordination number) as shown in Fig. 1.
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FIG. 1. Dimer configuration on the bipartite square lattice
(left) and corresponding configuration of the divergence-free
magnetic field (right —a dark arrow carries 3 times the flux of a
light one). The two lower quadrants represent plaquettes which
can be flipped (dimers rotated by �=2). These plaquettes have
zero average B field.
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magnetic field without monopoles. A monomer is a mono-
pole with charge �1 depending on the sublattice.

We define the lattice flux�� through a surface �which
does not contain any sites as the sum of the magnetic
fields on the links piercing it �� � �

RR
B 	 dS�lattice. For a

cube with periodic boundary conditions, the flux through
any surface that wraps around the system is invariant
under local rearrangements of the dimers and under lat-
tice translations of the surface. In particular, if we let �i
be planes perpendicular to the cubic unit vectors ei, the
fluxes �i through them are the maximal invariants that
characterize a given topological sector of the dimer
model. For an L3 cube the maximal possible flux is L2=2.

A dimer configuration may be represented by a lattice
magnetic field in any dimension. In 2D, one solves the
constraint r 	 B � 0 through B � r� h [16], where h,
the height function mentioned earlier, is a scalar field on
the dual lattice. In 3D, B is computed from a vector
potential A on the links of the dual lattice. Given an
arbitrary A we recover B as its (lattice) curl, B � r�
A which is computed as

Bi�x� �
X

y�@p

Aj�y�; (2)

the oriented sum of the link variables on the boundary @p
of the dual plaquette pi�x� pierced by the link �x;x� ei�.
While in 2D, h is defined up to a global constant, in
3D, we have local gauge transformations, Aj�y� !
Aj�y� �
�y � ej� �
�y�, where 
 is an arbitrary func-
tion on the sites of the dual lattice. Consequently, it is
necessary to pick a gauge to work out properties of the A.
The fluxes �i can be computed from the lattice line
integrals of the vector potential along the boundaries of
�i. Hence the sector with all �i � 0 is obtained from
gauge fields A that obey periodic boundary conditions
themselves.

In analogy to 2D we now conjecture that the long-
wavelength fluctuations of A and therefore B are gov-
erned by a probability distribution for the coarse-grained
fields:

P�A� / e��K=2�
R

V
�r�A�2 � e��K=2�

R
V
B2

(3)
167004-2
in the vicinity of the zero flux �i � 0 state. In the
exponent of Eq. (3) the energy B2=2 of a magnetic field
appears naturally. Configurations that locally minimize
the (coarse-grained) field strength (cf. the lower quad-
rants of Fig. 1) maximize the number of flippable pla-
quettes with two parallel dimers and have high entropy, as
described by Eq. (3).

Two comments are in order:
(i) The assertion Eq. (3) implies that the gauge field is

in a Coulomb phase, in the language of lattice gauge
theories. The existence of this phase in our lattice system
is not in conflict with Polyakov’s proof of confinement
[17] for the standard U(1) lattice gauge theory in 3D
because in our case the microscopics explicitly forbid
the monopoles that were crucial to his analysis.

(ii) Gauge invariance explictly forbids any relevant
operators at the fixed point defined by Eq. (3); this is
the standard explanation of the masslessness of the pho-
ton. Consequently, the prediction of a Coulomb phase is
self-consistent and weak perturbations cannot give rise to
anything new. This should be contrasted with the situ-
ation in 2D, where vertex operators can become relevant
even at weak coupling and, depending on the height
stiffness and the radius of the height field, lead to a flat
phase instead of the rough phase described by a purely
Gaussian action.

Returning to the ansatz (3) it is straightforward to
deduce the long distance correlator,

hBi�x�Bj�0�i �
1

4�K

3xixj � r2�ij
r5

; (4)

which is of the standard 3D dipole form. Reinserting
the sublattice sign factors gives the connected dimer
correlators.

To test the dipole form, we have carried out Monte
Carlo simulations using the pocket algorithm [7,18] on
large cubic lattices of size L3 with L up to 128, with
periodic boundary conditions. We have computed the
connected correlation function for dimers at site x and
at x� r, both pointing in the same direction e1 � �100�.
The vector r was taken as a multiple of lattice vectors
[111], [010], [100], [110]. The correlations nicely fall off as
1=r� in the regime a � r � L, with � close to 3.
Furthermore, the ratios of the correlations also agree
very well with the predicted dipole form Eq. (4), as
shown in Fig. 2.

Going beyond this regime, we can even compute the
scaling form of the correlations for r� L through a
proper treatment of the periodic boundary conditions
used by our algorithm, which explores all topological
sectors. In the long-wavelength description, we can write
the fields in a given flux (topological) sector as B�x� �P

i��i=L2�ei �B0�x� so that the field B0 now carries zero
flux.When 
 �

P
i�iei is nonzero, the stiffnessesKk and

K? for fluctuations parallel and perpendicular to it will
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FIG. 3. Monte Carlo data for normalized connected dimer
correlations, j144hni�x�ni�0�i � 1j on the L � 10 fcc lattice, for
i along the [110] direction. Separations x are along [110]
and [011] and are measured in nearest-neighbor spacings, as
indicated.
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FIG. 2. Monte Carlo data of connected correlations (symbols)
between parallel dimers, z2hni�x�ni�0�i � 1, in various direc-
tions, multiplied by the sublattice sign factor �x and by R3,
plotted vs the Euclidean distance between the dimers, R. The
coordination z � 6 for the cubic lattice. Left: for a system of
size L � 128; R � L, the dipolar asymptotes are indicated by
horizontal lines. The overall scale factor is fixed by normaliz-
ing those lines with respect to the [100] correlations. Right: for
a system size L � 32, the data are compared to our finite-size
formula; the only fitting parameter is an overall scale factor.
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no longer be equal. Nevertheless, these are semimicro-
scopic and hence can depend only on the average local
magnetic field. Consequently, we expect that both Kk;? �
K �O��2=L4�, where K is the stiffness in the zero flux
sector.

With these considerations we can generalize (3) to

P�B� / e��Kk=2���
2=L�e�1=2

R
V
�KkB

02
k
�K?B02

?
�: (5)

The first factor will ensure that ��O�
����
L

p
� whence

Kk;? � K �O�1=L3� so that the stiffness anisotropy
can be ignored for large systems.

We can now deduce the correlations in a given flux
sector, hBi�x�Bj�0�i
 � �i�j=L

4 � hB0
i�x�B

0
j�0�i where

the second piece is independent of 
. After averaging
the first term with weight e��K=2���2=L�, it equals
�ij=�KL

3�. From dimensional analysis we know that the
second piece is of the form fij�x=L�=�KL3� so that the
two terms together have the appropriate form for a finite-
size scaling function.

Finally, we have also determined the correlator
hB0

i�x�B
0
j�0�i in a finite-sized sample subject to periodic

boundary conditions. We are not aware of a closed form
evaluation of this quantity but can write it as a sum in
momentum space, which needs ultraviolet regularization.
As we eventually compare it to a lattice simulation, it is
most convenient to do this via a lattice sum The resulting
forms, e.g., hBx�ma�Bx�0�i � L=�KL3� with L given by

1�
X

n�0

�4�2cos�2�any=L��2cos�2�anz=L��

�6�2
P
i
cos�2�ani=L��

ei2�an	m=L;

can then be compared directly with the simulations’
results for distances large compared to a lattice con-
167004-3
stant, a. In Fig. 2, the results are shown for a system of
size L � 32. After adjusting the one free parameter to
Ka3 � 4:9 the curves agree well with simulation data for
r larger than a few lattice spacings. A more detailed
finite-size analysis that lets the exponent � vary finds it
to be � � 3:00� 0:02, in excellent agreement with the
dipolar form.

The gauge representation can be used to compute other
operators of interest. Most notably, it shows that the
interaction between two monomers is an attractive en-
tropic force with the same form as that between oppo-
sitely charged monopoles, i.e., an inverse squared force.
One can also consider the Wilson loop hexp�i

R
C A 	 dl�i

along a closed contour C. In the deconfined phase this
exhibits a perimeter law at large loop sizes; i.e., it decays
as e�P, where P is the perimeter of the loop C, although
with interesting corrections coming from the long range
nature of the Coluomb force [19].

fcc lattice.—As was emphasized above, we expect a
fundamental distinction between bipartite and nonbipar-
tite dimer models. For the latter, the lack of a gauge
representation indicates the absence of a Coulomb phase.
To investigate this, we have simulated dimers on the face-
centered cubic lattice, a simple nonbipartite 3D Bravais
lattice.

In Fig. 3, we display the connected correlations be-
tween two parallel dimers in two different directions on a
system of size L � 10, i.e., containing 4� 103 sites. The
decay of the oscillating correlations is extremely rapid and
fits well to an exponential form with a correlation length
of  � 0:35� 0:01 nearest neighbor distances. This es-
tablishes that the fcc dimer model is in an exponentially
deconfined phase.
167004-3
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FIG. 4. The 3D Fisher lattice is obtained by decorating the
sites of a simple cubic lattice (left) with the cluster shown on
the right. Its six external legs (heavy lines) correspond to the
original bonds of the cubic lattice. The numbers denote the
possible locations of the test monomers.
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Fisher lattice.—It is also possible to identify a 3D
dimer model with exponential correlations and both con-
fined and deconfined phases analytically. This is done by
mapping the 3D Ising magnet on the cubic lattice onto a
dimer model on the decorated cubic lattice shown in
Fig. 4, where the original bonds have fugacity z �
1= tanhK (K being the strength of the ferromagnetic
coupling), whereas those internal to the decorating clus-
ters have fugacity 1. The correlator of the cubic Ising
model between spins Si; Sj at sites i and j can be ex-
pressed in terms of monomer correlators of the resulting
dimer model in the same way as described in detail in
Ref. [11] for the corresponding 2D lattice [10]—in fact,
the analysis carries over to any dimension.

One obtains hSiSji �
P

2
ki;kj�1m�i;ki�;�j;kj�, where

m�i;ki�;�j;kj� denotes the correlator of test monomers located
on sites ki of cluster i and kj of cluster j (see Fig. 4). This
correlator is given by the ratio of the partition functions
with and without the pair of monomers present.

In the high temperature phase of the Ising model,
hSiSji ! 0 exponentially, so that all monomer pairs are
confined. At low temperatures hSiSji decays exponen-
tially to a constant. Therefore, at least one pair of mono-
mers is deconfined. Unless possible algebraic terms
present in the four correlators exactly cancel, which
seems very unlikely, the deconfinement is exponential.

Conclusions.—We have argued that the distinction be-
tween the behavior of bipartite and nonbipartite lattices
familiar from dimer models in 2D holds also in 3D. The
former are characterized by a conservation law in a long-
wavelength description which gives us a Coulomb phase
in 3D and mutatis mutandis should do so in all d > 3 as
well. Nonbipartite lattices lack such a constraint and can
be generically expected to exhibit exponentially confined
or deconfined phases as they do in our 3D examples. The
Coulomb phase should also arise in other problems that
involve conservation laws, e.g., the statistical mechanics
of spin ice which is also the Ising antiferromagnet on the
pyrochlore lattice [20]. Finally, we note that Hermele,
167004-4
Fisher, and Balents [21] are considering a set of closely
related three-dimensional models.
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