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Mesoscopic Effects in Adiabatic Spin Pumping
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We show that temporal shape modulations (pumping) of a quantum dot in the presence of spin-orbital
coupling lead to a finite dc spin current. Depending on the strength of the spin-orbit coupling, the spin
current is polarized perpendicular to the plane of the two-dimensional electron gas, or has an arbitrary
direction subject to mesoscopic fluctuations. We analyze the statistics of the spin and charge currents in
the adiabatic limit for the full crossover from weak to strong spin-orbit coupling.
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spin current polarized perpendicular to the 2DEG plane,
with the sign and magnitude of the current subject to HSO � %�px�x � py�y� � �� ~pp� ~���z; (1)
There is a growing interest in the physics of spin trans-
port through low-dimensional quantum structures [1]
with the aim of controlling and manipulating spin in
microelectronic devices. A fascinating tool for spin ma-
nipulation is a ‘‘spin battery’’ or ‘‘spin pump,’’ a device
that generates a spin current without an accompanying
charge current [2]. Following a proposal of Mucciolo
et al. [3], a spin battery was realized recently [4] using
a quantum dot in a two-dimensional electron gas (2DEG).
In this geometry, the direction of spin polarization is set
by an external magnetic field parallel to the plane of the
2DEG. Current is generated by periodic variation of gate
voltages, an eventual charge current being suppressed by
fine tuning the dot shape. Other proposals for spin pumps
have used the idea of locally breaking spin-rotation sym-
metry to pump a spin-polarized current by a magnetic
field [2], magnetic impurities [5–7], and by periodic
modulation of the spin-orbit coupling in the 2DEG [8].

Spin current is different from charge current because of
the vector nature of spin. In fact, it is the ‘‘vector’’ nature
of spin — different directions of spin corresponding to
different quantum-mechanical superpositions of ‘‘spin
up’’ and ‘‘spin down’’— that makes it a promising candi-
date for the practical realization of a quantum computer
[9]. Control of magnitude as well as direction of spin
current is of paramount importance if the full benefits
of a spintronic circuit are to be reaped, or for accumulat-
ing spin in a solid-state device that is used as the building
block in a scheme that makes essential use of quantum
coherence. The spin battery of Refs. [3,4] satisfies this
requirement in part, since magnitude and sign of the
current can be controlled, but its direction is determined
by the external magnetic field, allowing for spin polar-
ization in the 2DEG plane only.

In this Letter, we investigate a quantum-dot based spin
pump for which Bychkov-Rashba [10] and Dresselhaus
[11] contributions to spin-orbit coupling are the sources
for spin-rotation symmetry breaking. We show that, de-
pending on the strength of the spin-orbit coupling, a
quantum dot with a variable shape can pump either a
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control via mesoscopic fluctuations, or a spin current with
an arbitrary direction of polarization.

The possibility to generate a spin current polarized
perpendicular to the plane of the 2DEG allows for an
interesting realization of a ‘‘spin Hall effect’’ [12] if the
spin current is injected into a 2DEG which shows the
anomalous Hall effect [13]. The 2DEG then has skew
spin-orbit scattering with spin up and spin down (mea-
sured perpendicular to the 2DEG plane) being scattered
preferentially in opposite directions, perpendicular to the
flow of current. While a current of unpolarized electrons
leads to a spin imbalance perpendicular to the current
flow [12] and a spin current polarized in the plane of the
2DEG is not affected, a spin current polarized perpen-
dicular to the 2DEG should lead to an anomalous Hall
voltage across the sample.

The system under consideration consists of a ballistic
quantum dot connected to two electron reservoirs
through ballistic point contacts with N1 and N2 channels
each; see Fig. 1, inset. Gate voltages x1 and x2 of two
shape-distorting gates allow for a time-dependent varia-
tion of the dot shape. The same geometry was used in the
spin battery of Ref. [4], with a quantum dot without
notable spin-orbit coupling. Electron motion in the dot
is characterized by the transit time �tr � L=vF, where L
is the dot size and vF the Fermi velocity, and the time
�esc � h=N� for escape to the reservoirs, where N �
N1 � N2 and � is the mean spacing between single-elec-
tron levels in the quantum dot. The escape time, which is
determined by the point contacts, is typically much larger
than �tr. In the absence of spin-orbit coupling, periodic
variation of the gate voltages x1 and x2 leads to a dc
charge current through the dot [15–17]. Below, we show
that a spin current is generated in the presence of spin-
orbit scattering.

The Dresselhaus and Bychkov-Rashba contributions to
the spin-orbit coupling arise from the spin splitting of the
conduction band in bulk GaAs [18] and the asymmetry of
the potential well forming the 2DEG, respectively. The
corresponding term in the Hamiltonian has the form
2003 The American Physical Society 166801-1



0 0.5 1 1.5
 τ

esc
 / τ

Z

0

0.5

1

1.5
V

ar
ia

n
ce

I
C

I
S,Z

I
S,X

I
S,Y

x x1
2

N N
1 2

FIG. 1 (color online). Current variance (in units of I20=2) as a
function of Zeeman coupling strength (b � �esc=�Z) for a fixed
value of SO coupling strengths c? � 0:47, and ck � 0:12 taken
from Ref. [14]. The difference between hI2s;xi and hI2s;zi for large
b vanishes for c? � 1. The inset shows a quantum dot with out
of phase shape modulation, and a typical electron trajectory
which gathers a Aharonov-Bohm flux depending on its per-
pendicular spin projection.
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where px and py are the in-plane electron momentum and
�x, �y, and �z are the Pauli matrices. The coefficients %
and � define a length scale

� �
�h

mj%2 � �2j1=2
;

wherem is the electron mass. For quantum wires, only the
spin projection perpendicular to the wire and in the plane
of the 2DEG is conserved. As a result, pumping through
such a system yields a spin current with the polarization
direction in the plane of the 2DEG [8]. For quantum dots
of size L� �, the role of spin-orbit scattering is quali-
tatively different from one-dimensional or bulk systems.
The difference originates from the fact that, although
spin-orbit scattering has a small effect in the transit
time �tr if L� �, it still may have a large effect within
the time scale �esc [19]. As shown in Ref. [19], a unitary
transformation casts H into the form

H �
1

2m
	 ~pp� ~aa? � ~aak�2; (2)

where

a? �
�h�z� ~rr� ẑz�

2�2
; ~aak �

~aa?
�h
	�~rr  ~���%� ~rr� ~���z� (3)

are spin-dependent vector potentials representing the ef-
fects of spin-orbit scattering. They are characterized by
scattering times �? and �k,

�? � ��1�tr	2�=L�
4; �k � 	�0��1�?	2�=L�

2 � �?;

(4)

where � and �0 are geometry-dependent coefficients of
166801-2
order unity [20]. Whether or not the spin-orbit term ak is
important depends on the relative size of �k and �esc. We
now discuss the cases �k � �esc and �k & �esc separately.

For �k � �esc the only relevant spin-orbit term in the
Hamiltonian is the spin-dependent vector potential a?.
This term has the same form as the vector potential
arising from a magnetic field of size Bso � �h=2e�2 with
opposite directions for spin up (") and spin down (#),
measured perpendicular to the plane of the 2DEG.
Hence, the perpendicular spin projections are conserved,
and separate dc currents I" and I# will be pumped through
the quantum dot for spin up and spin down. Generically,
one has a spin current Is;z � I" � I# � 0 because electron
trajectories that enclose the same geometrical area (see
inset of Fig. 1) gather an Aharonov-Bohm flux with
opposite signs for electrons with opposite spin projec-
tions, thereby giving the scattering phase shift a spin
dependence. In a chaotic cavity, both the sign and magni-
tude of the currents I";# are essentially random, dependent
on the detailed shape and electron density of the quantum
dot. Following the protocol of Ref. [3], a spin battery with
spin current polarized perpendicular to the 2DEG plane
results if the shape of the dot is fine-tuned so that the
charge current Ic � I" � I# � 0. In order to compare
typical (rms) sizes of spin and charge currents, we note
that the spin current is formally equal to the magnetic-
field antisymmetric component of the charge current for a
quantum pump with spinless electrons in a perpendicular
magnetic field of size Bso. The latter quantity was calcu-
lated in Ref. [21] using random matrix theory, which is
valid if the dot has an irregular shape and �esc � �tr,

r ms Is;z �
�
1�

1

	1� �esc=�?�3

�
1=2

rms Ic: (5)

We now turn to the general case �k & �esc. We consider
a sinusoidal time dependence of the gate voltages, x1	t� �
�x1 cos	!t� and x2	t� � �x2 cos	!t��� and consider
the contribution to the charge and spin current that is
bilinear in the gate voltage amplitudes �x1 and �x2. The
starting point of our calculation is the relation between
the charge and spin currents and the 2N � 2N scattering
matrix S of the quantum dot [15],

Ic �
!�x1�x2 sin�

2 
tr Im

�
	� � 1�

@S
@x2

@Sy

@x1

�
;

~IIs �
!�x1�x2 sin�

2 
tr Im

�
	� � ~���

@S
@x2

@Sy

@x1

�
;

(6)

where � is an N � N diagonal matrix with elements
�jj � N2=N for j � N1, and �jj � �N1=N for N1<
j � N and 1 is the 2� 2 unit matrix in spin space.

In order to calculate the average and rms of the charge
and spin current for an ensemble of quantum dots, we
need to know the average of a product of up to four
scattering matrix elements taken at different values of
the parameters x1 and x2. We calculate this correlator
166801-2
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using random matrix theory (RMT) [22]. In RMT, the
spin-orbit part of the Hamiltonian (2) is replaced by a
2M� 2M random Hermitian matrix [20],

Hso � i

�������
�

4 

s �
A3 � �3������
�?

p �
A1 � �1 � A2 � �2�����

�k
p

�
; (7)

whereas the dependence on the shape-distorting gate
voltages x1 and x2 is represented through the random
Hermitian matrix

Hshape �
�

 

X2
j�1

xjXj � 1: (8)

Here, Xj, j � 1; 2 are real symmetric random M�M
matrices and Aj, j � 1; 2; 3 are real antisymmetric ran-
dom M�M matrices with

t rXiXj � trAiA
T
j � M2�ij: (9)

At the end of the calculation, the limit M ! 1 needs to
be taken. Performing the random matrix average using
standard methods [20,23], we find that the relevant aver-
age of a product of four scattering matrices is

hS	1�kl�Sy	20�nk � S	10�mn � Sy	2�lmi

�W	1�	120�W	1�	102��ln �W	2�	120102�; (10)

where 1, 2, 10, and 20 are shorthand notations for values of
the gate voltages x1 and x2 and the Fermi energy ", and we
have used tensor notation for the spin degrees of freedom.
The first contribution on the right-hand side of Eq. (10) is
the product of pair averages [20],

W	1�	120� �
1

M12 � trR	1� � Ry	20�
� 12;

with a similar definition of W	1�	102�. Here 12 � 1 � 1,
the auxiliary matrix R is defined as

R	"; x1; x2� � exp�2 i�"�Hso �Hshape	x1; x2���; (11)

and the trace ‘‘tr’’ is not taken over the spin degrees of
freedom. In taking the inverse in Eq. (11), the rule for
multiplication of the tensor products is 	�j � �k0 � �
	�k � �j0 � � 	�j�k� � 	�j0�k0 �. The second contribution
in Eq. (10) involves the random matrix equivalent of the
Hikami box from diagrammatic perturbation theory and
can be calculated using the method of Ref. [23]. Using the
tensor notation with the same product rules as before, the
result can be written as

W	2�	120102� �W	1�	120�W	1�	102�D	120102�

� W	1�	12�W	1�	1020�; (12)

where

D	120102� � M14 � trR	1� � Ry	20� � R	10� � Ry	2�:
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The traces are calculated using Eq. (9) after expanding R
to second order in Hso and Hshape and taking M ! 1.

Substituting these results into Eq. (6) one then finds the
average and variances of the spin and charge currents. All
ensemble averages are zero, as well as the covariances for
different components of the spin current or of spin and
charge currents. The full results for the average square
spin and charge currents can be written by introducing
I0 � 	!=2 �4�x1�x2 sin�

��������������������
N1N2=N4

p
, c? � �esc=�?, and

ck � �esc=�k:

hI2c i � I20

�
1�

1

	1� 2ck�3
�

2

	1� ck � c?�3

�
;

hI2s;zi � I20

�
1�

1

	1� 2ck�
3 �

2

	1� ck � c?�
3

�
;

hI2s;xi � hI2s;yi � I20

�
1�

1

	1� 2ck�3

�
:

(13)

These general results confirm that spin current is po-
larized perpendicular to the plane of the 2DEG if �k �
�esc, while its direction is arbitrary if �k � �esc. In
practice, the ratio �k=�esc can be tuned rather straight-
forwardly by changing the conductances of the point
contacts connecting the quantum dot to the outside
world or the dot size. Recent experiments by Zumbühl
et al. show that both limits can be obtained experimen-
tally [14]: Depending on the size of the quantum dots,
Zumbühl et al. find c?N ranging from 0:94 to 20 and ckN
ranging from 0:25 to 20. For N � 2 and at a temperature
T � ��1

esc , we obtain rms Is;z=rms Ic � 0:72. At finite tem-
perature, both the effect of thermal smearing and a finite
dephasing time �� need to be taken into account.
Dephasing is accounted for by the substitution 1=�esc !
1=�esc � 1=��, whereas thermal smearing requires inte-
gration over ". For large temperatures T � ��1

esc , and in
the absence of any Zeeman coupling, we can borrow the
results of Ref. [21] and find the polarization ratio
rms Is;z=rmsIc � �	c2? � 2c?�=	c

2
? � 2c?� 2��1=2 � 0:61.

Before concluding, we discuss the dependence of the
pumped current on an applied magnetic field ~BB. This
question is relevant if a spin pump is used in conjunction
with spin manipulation by means of in-plane or perpen-
dicular fields. Within RMT, the effect of a magnetic field
is modeled by a third random matrix [19,20],

HB �

�������
�

4 

s �
i
A0 � 1������
�H

p �
X � �z����������
�H;?

p

�
�

1

2�Z
B̂B  ~�;�; (14)

where 1=�Z � 3BgB, B is the magnitude of the applied
magnetic field, B̂B its direction, 3B is the Bohr magne-
ton, g is the g factor of GaAs, �H � ��1�tr	2=eBzL

2�2,
�H;? � 	4�=3BgLB�2=�00�tr, � and �00 being geometry-
dependent coefficients of order unity, A is an M�M
real antisymmetric matrix with trace trAAT �M2, and
X is a real symmetric matrix with trace trX2 � M2. The
time �H describes the orbital effect of the magnetic-field
166801-3
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component perpendicular to the 2DEG; it is the time
needed for picking up a quantum of magnetic flux. The
time �H;? describes spin-flip processes arising from the
interplay of the component of the magnetic field parallel
to the 2DEG and the spin-orbit scattering [24].

Adding the random matrix HB to the exponent in
Eq. (11) and repeating the previous calculations, we find
(i) inclusion of �H has no effect on the current statis-
tics and (ii) inclusion of �H;? amounts to the substitution
1=�? ! 1=�? � 1=�H;?. In general, the effect of Zeeman
coupling to the parallel field (time scale �Z) is to decrease
correlations between I" and I#, so that both rms Is;z and
rms Ic are reduced. On the other hand, the variance of the
spin current polarized along the direction of the in-plane
magnetic field is enhanced. Both of these effects are
shown in Fig. 1. The full results for the current variance
in the presence of Zeeman coupling are rather lengthy and
will be reported elsewhere. Here, we confine ourselves to
the limiting cases of Ref. [19] which are distinguished by
a parameter � � 1; 2 characterizing the mixing of states
with different spins for strong Zeeman splitting.
Choosing the magnetic field along the x direction, these
are (i) ck � �esc=�k � 1, and b � �esc=�Z large or small
in comparison to c? � �esc=�?, for which � � 1, and
(ii) c? � 1, b large or small in comparison to ck, for
which � � 2. For case (i), when b2=c? � 1 � c?, we
obtain to the lowest order:

hI2ci � hI2s;zi � I20	2� 12b2=c? � 96b4=c2?�;

hI2s;xi � hI2s;yi � I20	12b
2=c? � 96b4=c2?�;

(15)

and when c? � 1 � b we find:

hI2ci � hI2s;xi � I20	2� 3c? � 6c2?�;

hI2s;zi � hI2s;yi � I20	3c? � 6c2?�;
(16)

which is ‘‘dual’’ to expression (15) under the exchange
Is;x $ Is;z and c? ! 4b2=c?. For case (ii), the lowest
order expansion in b2=c? � 1 � c?; ck,

hI2c	s;x�i � I20�1�
3
8c

�3
? � 1

2	b
2=c?�c�4

? �;

hI2s;zi � hI2s;yi � I20	1�
1
8c

�3
? �;

(17)

is dual under the transformation 4b2=c? ! ck to the
variance in the other limit ck � 1 � c?; b2=c?. The
nonvanishing current variances hI2i can be written in a
unified way as hI2i � 4	s=5��I20 , where5 � 2 defines the
time reversal symmetry of orbital motion, and s � 1 is
the Kramers degeneracy parameter.

In conclusion, we have shown that a quantum pump
consisting of a quantum dot with spin-orbit coupling
allows for the generation of both a dc charge current
and a dc spin current. Depending on the strength of the
spin-orbit scattering or on the conductances of the point
contacts between the dot and the reservoirs, the pumped
166801-4
spin current is polarized perpendicular to the 2DEG or
has an arbitrary direction. Measurement of the spin cur-
rent is possible via the spin Hall effect or by connection of
the spin pump to a (semiconducting) ferromagnet with
known magnetization direction. Furthermore, the method
of adiabatic spin pumping, as opposed to other mecha-
nisms such as rectification [4,25], allows the direction of
spin polarization to be continuously changed.
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