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Semiflexible Polymer Confined to a Spherical Surface
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We develop a formalism for describing the kinematics of a wormlike chain confined to the surface of
a sphere that simultaneously satisfies the spherical confinement and the inextensibility of the chain
contour. We use this formalism to study the statistical behavior of the wormlike chain on a spherical
surface. In particular, we provide an exact, closed-form expression for the mean square end-to-end dis-
tance that is valid for any value of chain length L, persistence length lp, and sphere radius R. We predict
two qualitatively different behaviors for a long polymer depending on the ratio R=lp. For R=lp > 4, the
mean square end-to-end distance increases monotonically with the chain length, whereas for R=lp < 4,
a damped oscillatory behavior is predicted.
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ation of the mean square end-to-end distance in a simple, have effectively altered the complicated constraints on
A polymer in a confined geometry is a fundamental
problem in polymer physics that underlies some impor-
tant biological processes and technological applications.
For example, polymer confinement is relevant to DNA or
RNA packaging in viruses [1] and DNA packaging in
eukaryotic cells [2], where, in both cases, the genome is
confined within a cavity that is many orders of magnitude
smaller than its unconfined radius of gyration.

While the effect of confinement for a flexible polymer
is primarily entropic [3], confining a semiflexible poly-
mer involves both energetic and entropic effects, with the
balance controlled by the stiffness of the chain and the
length scale of confinement [4–6]. Consider a long, ideal
polymer chain confined to a spherical cavity. In the case
of a flexible polymer, the chain has the entropic tendency
to fill the available space, with the highest concentration
of chain segments in the center of the cavity [7]. In the
limit of high stiffness, on the other hand, the chain is
forced to circle near the surface of the cavity due to its
tendency to minimize the bending energy cost. The inter-
play among the three length scales, namely, the length of
the chain, the persistence length, and the characteristic
size of the confinement, is thus a fundamental feature in
the study of a semiflexible polymer in a confined geome-
try. Unfortunately, few problems involving semiflexible
chains admit exact, closed-form solutions, and we are not
aware of such solutions for a semiflexible chain in a
confined geometry.

In this Letter, we present an exact, closed-form solu-
tion for the conformation of a semiflexible chain confined
to the surface of a sphere using the wormlike chain model
[8]. This problem is relevant to systems involving strongly
adsorbed polymers on spherical surfaces which are often
used as simple models for studying DNA/protein com-
plexes and adsorption of a polymer on colloidal particles
[5,9,10]. By exploiting a novel representation of the dif-
ferential geometry of an inextensible curve on a spherical
surface, we arrive at a simple and concise description of
the chain kinematics, which in turn permits the evalu-
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closed-form expression valid for arbitrary chain length,
stiffness, and sphere radius.

We consider a wormlike chain of contour length L that
is confined to the surface of a sphere of radius R. The
chain trajectory defines a space curve ~rr�s� where the path-
length parameter s has units of length and runs from zero
at one end of the polymer chain to L at the other end. The
chain contour is assumed inextensible, which requires
that the tangent vector ~uu � @s ~rr�s� satisfies j ~uu�s�j � 1.
The energetics of the wormlike chain model is given by
a bending Hamiltonian of the form [11]


H �
lp
2

Z L

0
ds
�
@2 ~rr

@s2

�
2
; (1)

where 
 � 1=�kBT� and lp is the persistence length of the
free polymer chain. Since we are interested in the equi-
librium statistical behavior of an open chain with free
ends, the twist degrees of freedom are irrelevant. In
problems where the polymer is either closed or torsionally
constrained, twist plays a crucial role in the equilibrium
and dynamic properties of the polymer; these problems
are beyond the scope of this Letter, however.

The constraint that the chain must lie on the surface of
the sphere requires that the position vector ~rr�s� be a fixed
distance R away from the center of the sphere. We now
seek a convenient description of the chain kinematics that
automatically satisfies this constraint as well as the local
inextensibility of the chain contour. Setting the origin of
the coordinate system to be the center of the sphere, we
define a local orthogonal unit triad ~tti (i � 1; 2; 3) and
choose the position vector to lie in the third direction
[~rr�s� � R~tt3�s�]; this guarantees that the chain is confined
to the spherical surface. The rotation of the triad system as
we progress along the chain contour is given by a rotation
vector ~!! that acts as @s~tti � ~!!� ~tti; thus the chain posi-
tion is determined by the rotation of ~tt3 over s. The tangent
vector is easily shown to be ~uu � R�!2 ~tt1 �!1 ~tt2�, and the
chain inextensibility constraint is satisfied by requiring
!2

1 �!2
2 � R�2. By choosing this coordinate frame, we
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FIG. 1. The conformation of a polymer chain wrapping
around a unit sphere with a constant curvature that orbits after
ten revolutions around the sphere.
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the chain conformation to a simple relationship between
!1 and !2 that can be trivially satisfied.

We now relate the rotation vector ~!! to the three Euler
angles of rotation �, �, and  . Performing an infinitesi-
mal rotation of the triad system, we can express the
components of ~!! in terms of @s�, @s�, @s [8]. We
complete our description of the spherical chain kine-
matics by setting @s� equal to zero and @s� equal to
R�1, leaving only the angle  to describe the chain
conformation that satisfies the constraints. Our mathe-
matical description of the chain kinematics is more
clearly understood by considering the chain curvature
vector

@ ~uu
@s

� 2 cos 
@ 
@s

~tt1 � 2 sin 
@ 
@s

~tt2 �
1

R
~tt3; (2)

which shows that the choice of  as the chain coordinate
effectively decouples the curvature due to the spherical
confinement from the curvature due to deflection of the
chain on the spherical surface.

A physically intuitive description of the conforma-
tion is to consider the triad system as a spinning top.
For stretches of the chain where the angle  is constant,
the top rotates about a fixed axis, and the chain lies along
an equator of the spherical body. When the angle  is
altered, the spinning top wobbles and resets its axis of
rotation such that the pathlength of the chain is main-
tained during the deflection. We can consider a reference
frame of the spinning top that removes the wobbling
motion associated with deflection of the angle  [12].
This frame is constructed by removing the accumulated
wobble by rotating ~tt1 and ~tt2 about the vector ~tt3 by the
total wobble angle  �s� �  �0�. We set  �0� to zero with-
out loss of generality and define the complex tangent ~�� �
�~tt1 � i~tt2� exp�i � and the complex curvature � �
iR�1 exp�i2 � to give the rate of rotation of this reference
frame. Using these definitions, the kinematic equations
describing the polymer conformations lying on a spheri-
cal surface are given by

@ ~��
@s

�
i
R
ei2 ~tt3; (3)

@~tt3
@s

� �Real

�
i
R
ei2 ~�� 	

�
; (4)

where the asterisk indicates complex conjugation.
We now give two examples of the solution to Eqs. (3)

and (4) to clarify the use of this coordinate frame. The
simplest example is the function  � �s which describes
a circle with radius R�1� 4R2�2��1=2 and period 2�=!
where !2 � R�2 � 4�2. As the second example, we con-
sider a function  that is a sawtooth function of s with a
slope � and period 2�=!. This function results in a
conformation with a constant curvature similar to wrap-
ping yarn in a spool. Figure 1 shows such a conformation
that comes to a closed orbit after ten periods around a
sphere. Chain conformations like this are of particular
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importance when dealing with chain self-interaction,
and are very difficult to describe in terms of Cartesian
coordinates.

With our description of the chain kinematics, the bend-
ing Hamiltonian becomes


H � 2lp
Z L

0
ds
�
@ 
@s

�
2
�
Llp
2R2 ; (5)

where the first term is due to chain curvature deformation
in the spherical surface and the second term is due to the
curvature of the confining surface. The chain statistics are
given by the probability that a chain with initial angle
 �0� �  0 will have a final angle  �L� �  defined as the
Green’s function G� j 0; L�. The Green’s function is
found by summing all of the statistical contributions of
the paths between  0 and  of the fluctuating field  �s�,
weighted by the Boltzmann factor exp��
H 
 �s��� [8].
The result can be written as an eigenfunction expansion

G� j 0; L� �
X1

m��1

1

2�
eim� � 0� exp

�
�
m2L
8lp

�
: (6)

Equation (6) is equivalent to the quantum mechanical
propagator for a particle confined to a circle, with the
bending energy in Eq. (5) playing the role of the kinetic
energy and the contour length acting as an imaginary
time. Use of Eq. (6) in finding chain averages requires
expressing the quantity of interest in terms of the function
 , thus making our compact expressions for the chain
kinematics [Eqs. (3) and (4)] extremely useful.

We note that the bending deformation due to the con-
finement of the sphere is uncoupled from undulations
within the surface of the sphere; thus conformation fluc-
tuations within the spherical surface are unaffected by
the overall spherical confinement. This is consistent with
previous work which demonstrates that, in a tightly bent
semiflexible polymer, those fluctuations that do not affect
the constraint are not suppressed [6].
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FIG. 2. The mean square end-to-end distance of a polymer
chain confined to a sphere with R=lp � 40.
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We now evaluate the mean square end-to-end distance
for the polymer. Using the definition of the end-to-end
vector ~RR � ~rr�L� � ~rr�0�, we can write ~RR2 as

~RR2� 2R2
1� ~tt3�0� 
 ~tt3�L��

� 2R2
X1
n�1

��1�n�1

2nR2n

 Y2n
j�1

Z sj�1

0
dsj

!

�

(Yn
k�1

Real
ei2� 2k�1� 2k��

)
; (7)

where s0 � L and  k �  �sk�. The second line of Eq. (7)
is obtained by eliminating the complex tangent ~�� from
Eqs. (3) and (4) iteratively starting from the initial posi-
tion. The average of Eq. (7) is performed by inserting a
propagator [Eq. (6)] between each successive function of
 in the expansion. The resulting expression is

h ~RR2i � �
X1
n�1

2R2��1�n
�
2lp
R

�
2n
An�N�; (8)

where we define N � L=�2lp�. The coefficients of the
expansion An�N� are compactly defined through the re-
cursive relation

An�N� �
Z N

0
d%1

Z %1

0
d%2 exp��%1 � %2�An�1�%2�; (9)

with A0�N� � 1. The recursive relation is more conven-
iently written in the differential form �@2N � @N�An�N� �
An�1�N�, with the initial conditions An�0� � 0 and
@NAn�0� � 0. This differential recursive equation can be
readily solved by a Laplace transform from the variableN
to p to give An�p� � p�n�1�p� 1��n. Inserting this re-
sult into Eq. (8), performing the straightforward summa-
tion, and inverse Laplace transforming the resulting
expression lead to our final result for the mean square
end-to-end distance of a chain confined to a spherical
surface

h ~RR2i � 2R2 � 2R2 exp

�
�
L
4lp

�

�
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16l2p
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sinh

�
L
4lp
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16l2p
R2

�
1=2
�

:

(10)

It can be easily verified that Eq. (10) recovers several
important limiting results. If the chain length is much
less than the radius, we expect that the chain will not feel
the effect of the spherical confinement. As the radius goes
to infinity, the leading order term in the lp=R expansion of
Eq. (10) yields the two-dimensional solution for a free
wormlike chain 4lpL� 8l2pfexp
�L=�2lp�� � 1g [13].
Similarly, as the chain length goes to zero, Eq. (10)
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approaches L2 for any finite sphere radius. Finally, for a
fixed radius R, we expect that for a sufficiently long chain
the end position becomes uncorrelated from the initial
position, thus leading to a uniform coverage of the sphere
by the chain segments. This results in a mean square end-
to-end distance of 2R2 as can be seen from Eq. (10) in the
limit of L approaching infinity for fixed lp and R.

In Fig. 2, we present a plot of Eq. (10) as a function of
the chain length for a fixed value of R=lp of 40. The mean
square end-to-end distance in Fig. 2 exhibits three dis-
tinct scaling regimes due to the three relevant length
scales. With R=lp � 40, the radius is large enough that
short stretches of the chain behave as a chain in two
dimensions. Figure 2 scales as L2 for short chains (L<
2lp), which is the rigid-rod behavior. In the intermediate
regime [2lp < L < R2=�2lp�], the chain behaves with the
random walk scaling of L. Essentially, the chain is suffi-
ciently long such that the end orientations are uncorre-
lated; however, the chain is not long enough to feel the
finite area of the confining spherical surface. For a suffi-
ciently long chain [L > R2=�2lp�], the polymer has dif-
fused over a distance where the curvature of the confining
surface restricts the magnitude of the end-to-end vector;
thus the final regime approaches a value of 2R2. Our
results for these latter two regimes agree with those
predicted using the flexible Gaussian chain model [14].

A qualitatively different behavior emerges when the
radius of the sphere is smaller than the persistence length.
Specifically, for R< 4lp, the arguments of the hyperbolic
functions in Eq. (10) are imaginary, resulting in an os-
cillatory mean square end-to-end distance. Physically,
the chain revolves around the sphere due to the orien-
tation correlation. In the limit of infinite chain stiff-
ness, the mean square end-to-end distance becomes
2R2 � 2R2 cos�L=R�, which corresponds to a polymer
chain confined to the equator of a sphere. For finite chain
stiffness, the L dependence of Eq. (10) contains an ex-
ponentially decaying oscillation with a periodicity in L of
166102-3
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FIG. 3. The mean square end-to-end distance versus the poly-
mer chain length for R=lp � 1=10 (solid curve), R=lp � 1=4
(dashed curve), R=lp � 2=5 (dash-dotted curve), and R=lp �
11=20 (dotted curve).
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8�lpR�16l2p � R2��1=2. The exponential decay of the os-
cillations reflects the eventual loss of correlation due to
the thermal fluctuations of the semiflexible chain. The
periodicity in L is larger than that at infinite chain stiff-
ness (2�R) because of the wrinkling of the chain due to
fluctuation. For R > 4lp, the chain orientation becomes
uncorrelated before the polymer completes a single pass
over the sphere, manifested in the lack of oscillation in
Fig. 2. The crossover at R � 4lp is analogous to a damped
harmonic oscillator where critical damping occurs when
the damping coefficient [1=�4lp� in our case] is equal to
the natural frequency of the oscillation (1=R) [15].

The oscillatory behavior of Eq. (10) for R< 4lp is
shown in Fig. 3. As expected, the short chain (L� lp)
behavior is independent of the radius. The damping of the
oscillations occurs exponentially in L with a correlation
length of 4lp (independent of R); however, since the
period of the oscillations is shorter for smaller radius,
the number of correlated spherical wraps decreases with
increasing sphere radius. As the chain length goes to
infinity, all of the curves in Fig. 3 approach 2R2.

The behavior of the mean square end-to-end distance
suggests the nature of the surface coverage by the poly-
mer as the length of the polymer increases. In the regime
corresponding to Fig. 2, the polymer covers the sphere in
a diffusive manner from the starting point. The scenario
is that of the polymer chain creeping over the sphere
starting at one pole towards the opposite pole as the
length of the chain increases. For the high chain stiffness
shown in Fig. 3, the orientation correlation causes the
chain to lie on the equator of the sphere, and conforma-
tion fluctuations cause the segment density to spread from
the equator toward the poles.
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Our treatment ignores the interactions between chain
segments, which will modify the predicted behavior.
However, some salient features predicted by our work
will remain. For example, our predicted change in the
manner in which the chain wraps the sphere as the stiff-
ness increases is consistent with the Monte Carlo results
in Ref. [10], which included both excluded volume and
electrostatic interactions. Thus our results both provide a
concise and unified expression for elucidating the domi-
nant effects due to the interplay among the three length
scales in the problem and serve as a useful reference for
examining new effects due to additional interactions.

The main advantage of the chain kinematics we have
developed is that it provides a convenient way to satisfy
the constraints associated with the wormlike chain model
and the chain confinement. Physically, strict confinement
of the chain to a sphere surface corresponds to infinitely
strong adsorption. However, our formalism can be ex-
tended to allow radial fluctuations away from the sphere
surface while still conserving the contour length. This
will enable us to treat a wormlike chain near an attractive
spherical particle or within a spherical cavity.
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