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Coulomb Bicrystals of Species with Identical Charge-to-Mass Ratios
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Structures of cold bicomponent Coulomb systems of particles with identical charge-to-mass ratios
and common oscillation frequency in a spherical harmonic potential are studied by molecular
dynamics simulations with up to 106 particles. For most initial conditions and cooling rates, the final
state becomes a completely mixed core surrounded by a set of nearly degenerated double shells of
separate species. For an equal amount of the two species, it is found that the ground state for larger
systems consists of a simple cubic structured core surrounded by outer double-shell structures.
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process of white dwarf stars [10]. value of �1 	 1 for the initial phase, the ions are cooled
Confined classical Coulomb systems of identical
charged particles have been intensively studied theoreti-
cally in the low temperature limit during the past deca-
des. These investigations have led to a wide range of
important results for single component systems including
determination of the ground state transition temperature
of infinite systems [1] and characterization of the struc-
tures of finite systems under various confinement condi-
tions (see, e.g., [2] and references therein). Ion traps in
combination with laser cooling have in recent years of-
fered the possibility to experimentally test theoretical
predictions by studying condensed single component sys-
tems of positive atomic ions. Among the striking results
are observations of real translational symmetric crystal-
line structures in large ion systems of * 105 ions in
Penning traps [3,4] and large cylindrical crystal struc-
tures in rf traps [5,6]. Besides being interesting systems
within condensed matter and plasma physics, crystalline
ion ensembles are interesting objects for such diverse
fields as accelerator physics [7,8], quantum computing
[9], and astrophysics [10].

Two-component systems have been considered theo-
retically earlier in a few investigations [11–16] mostly
dedicated to confinement conditions equivalent to that of
the Penning trap [11–15]. In connection with recent ex-
periments on bicrystal structures of singly charged ions
with different masses in linear Paul traps [17], specific
simulations of smaller systems up to a few thousand ions
have been made [16]. Two-component systems are, how-
ever, a very rich field for theoretical research with im-
portance for development of experiments utilizing
bicrystals such as cold molecular ion studies [18,19] and
other experiments involving sympathetically cooled ions
[15,20]. For studies involving particles with identical or
near identical charge-to-mass ratios q

m , results may fur-
thermore be very relevant for understanding the cooling
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In this Letter we consider the spatial ordered structures
of two-component systems of particles with identical
charge-to-mass ratios q

m and common oscillation fre-
quency in a spherical harmonic trapping potential at
low temperatures. The considered trapping condition can
effectively be realized in both Penning and Paul traps,
and the spherical geometry makes it possible to compare
the results with previous [21,22] as well as new simula-
tions of single component systems in a similar simple
spherical geometry. More specifically, we will focus our
presentation on the case where q2 � 2q1 and m2 � 2m1.

The total potential energy of an N ion system of the
type defined above is simply given by

U �
XN

i�1;j>i

QiQj

j ~rri � ~rrjj
�

1

2

XN
i�1

Mi!2 ~rr2i ; (1)

where Mi and Qi are the mass and charge of particle i,
respectively, and ! is the common effective trap
frequency.

For identical particles, e.g., particles characterized by
�q;m�, it has earlier been found that such systems typi-
cally reach a solid state phase when � � q2

akBT
* 200,

where a � �q2=�m!2��1=3 is the Wigner-Seitz radius for
maximum density and T is the temperature [1,23]. In
general, for a two-component system, two coupling pa-
rameters may be introduced. For simplicity, we will state
only the one, �1, corresponding to particles characterized
by �q1; m1� since at thermal equilibrium �2 � 25=3�1.

In the present molecular dynamics (MD) approach, we
solve Newton’s equation, Mi

d2

dt2
~rri�t� � ~FFi�t� for a variable

number of particles up to 106. The simulations were
performed with PROTOMOL [24], an object-oriented com-
ponent-based MD framework. The equations of motion of
the particles are propagated by a leapfrog integrator
scheme with a Nosé-Hoover thermostat. With a typical
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down to a temperature corresponding to �1 
 106 or
larger. The cooling period is 4� 105!�1, and the inte-
gration time step is 0:004!�1 or less. The Coulomb part is
computed directly for the smallest systems with N �
20 288, whereas a multigrid method [25,26] is used for
systems with N > 20 288. The processing speed for the
multigrid method is up to a factor of 	1000 larger than
the direct method when N � 106, with the cost of intro-
ducing a relative energy error of the order of 10�5 or less.
No significant discrepancies are found in structures and
energies between the multigrid and the direct calculations
in the transition region around 20 288 ions when con-
sidering initially disordered states. For all final configu-
ration energies the Coulomb part is computed by direct
summation.

In Fig. 1, the radial particle density distributions of two
50%:50% bicomponent systems are compared with cor-
responding distributions from monocomponent systems.
In all simulations the final value of �1 exceeded 106.
Since the space charge limited density of particles char-
acterized by �q;m� in the potential given by Eq. (1) is
proportional to m=q2, the bicrystal has a larger radius
than its monocomponent counterpart of particles with
parameters �q1; m1�. Qualitatively, both systems look
surprisingly similar with a number of outer shells sur-
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FIG. 1. Radial density distributions of cold monocomponent
(dashed lines) and bicomponent (solid lines) systems. Insets
illustrate the outer density distributions of the two species,
�q1; m1� (solid lines) and �q2; m2� (dashed lines). Upper graph:
20 288 �q1; m1� particles and 10 144 �q1; m1� � 10 144 �q2; m2�
particles. Lower graph: 100 000 �q1; m1� particles and
50 000 �q1; m1� � 50 000 �q2; m2� particles.
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rounding a homogeneous inner charge distribution.
Quantitatively, the shells of the bicomponent system ap-
pear however to be fewer and more diffuse. In order to
explore these findings in detail, we show in the inset of
Fig. 1 the outer parts of the radial density distribution of
each component. It is observed that the two species are
uniformly mixed throughout the crystal with each shell
containing a nearly identical number of each species. The
fact that the two species completely mix can be under-
stood by the following simple electrostatic argument: For
a particle with charge q and mass m confined by a
spherical harmonic potential with oscillation frequency
!, the equilibrium position outside a centrally positioned
spherical uniform charge distribution with total charge Q
is proportional to � Qq

!2m
�1=3. Hence the position will be the

same for particles with identical q=m, and a strong mix-
ing can be expected.

A close inspection of the insets of Fig. 1 indicate,
however, a small splitting of each shell, with the heaviest
particles occupying the inner part. The splitting �r is
obviously constant and nearly independent of the system
size. Furthermore, �r is empirically found to be in agree-
ment with

�r 
 a2 � a1; (2)

where a1 and a2 are the Wigner-Seitz radii for pure
systems of �q1; m1� and �q2; m2� particles, respectively.
This result has been found to be valid for other mixture
ratios and for other �q2; m2� particles satisfying q2=m2 �
q1=m1 as well.

In order to compare the outer intrashell structures of a
monocomponent cold system with a bicomponent one,
in Fig. 2, projections of the outer shell hemispheres
of systems containing 20 288 �q1; m1� particles and
10 144 �q1; m1� � 10 144 �q2; m2� particles are presented.
While the monocomponent system clearly exhibits regu-
lar hexagonal lattice structure, the bicomponent structure
is highly disordered with only very short range correla-
tions. This fact is distilled in the lower part of Fig. 2,
where the pair correlation functions for the interparticle
distances of the outer shell for three cold systems are
displayed. The two monocomponent systems show very
high and sharp nearest neighbor correlations as well as
peaks corresponding to long range correlations of an
ideal 2D hexagonal lattice. At least peaks indicating the
positions of the sixth nearest neighbors are observed. In
contrast, the bicomponent pair correlation function shows
only short range correlations and the present peaks are
significantly broader. The interesting three-hump struc-
ture of the nearest neighbor peak in the bicrystal corre-
lation function can be understood on the basis of the
nearest neighbor distances between identical particles of
the two species and the typical minimum distance be-
tween the two particles of different species.

The energy ground state for single component systems
confined by a spherical harmonic potential has previously
been investigated as a function of particle numbers in
165001-2



0 0.05 0.1 0.15

0.95

0.948

0.946

0.944

0.942

0.94

0.938

0.936

N 1/3

U
C

oh

FIG. 3. Cohesive energy Ucoh of 50%:50% �q1; m1�-�q2; m2�
cold bicomponent systems obtained from MD simulations with
different initial structures and various number of particles N:
Spherical truncated fcc structure (�) with one �q1; m1� particle
and one �q2; m2� particle forming a basis pair oriented along
one of the main crystal axes, spherical truncated simple cubic
(sc) structure (solid line) with one �q1; m1� particle and one
�q2; m2� particle forming a basis pair oriented along the �111�
direction, and a disordered state (dashed line). The vertical
dotted line at N 
 2 500 indicates an estimate of the minimum
number of particles needed for a system with clusters of sc
structures to become energetically favorable. The insets show
the projection of ‘‘fluid’’ and sc structures for a layer of thick-
ness 1:1a1 in the center of systems with N � 20 288.

0 2 4 6 8 10
0

2

4

6

8

r/a
1

P
ai

r 
C

or
re

la
tio

n

FIG. 2. 2D projections of the hemispheres of the outer shell of
systems containing 20 288 �q1; m1� particles (upper left), and
10144 �q1; m1� (�) �10 144 �q2; m2� particles (�) (upper
right). The 2D pair correlation function of monocomponent
and bicomponent crystals for the outermost shell is presented
for 20 288 �q1; m1� particles (dotted line), 20 288 �q2; m2�
particles (dashed line), and 10 144 �q1; m1� � 10 144 �q2; m2�
particles (solid line) are shown in the lower panel. Solid boxes
represent plane 2D hexagonal lattice pair correlation positions
for �q1; m1� particles.
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MD surveys by calculating the cohesive energy of cold
systems developing from various initial configurations
and temperatures [21,22]. In Fig. 3, we present the calcu-
lated cohesive energies for a series of MD simulations of
50%:50% mixed bicomponent systems of various sizes.
The calculated average cohesive energy per particle is
given by

Ucoh � �U�Uhomo�=�N~qq2=~aa�: (3)

Here, U is the actual Coulomb energy of the system and
Uhomo � 9=10N5=3�~qq2=~aa� is the energy of an equivalent
homogeneous charge distribution, based on particles of a
charge ~qq � 1

2 �q1 � q2�, and a corresponding effective
Wigner-Seitz radius ~aa given by

~aa �

�
�1

q21
m1!

2 � �2
q22

m2!
2

�
1=3

� ��1a
3
1 � �2a

3
2�

1=3;

(4)

where �1 and �2 denote the relative content of the two
species in the system (this definition will be justified
below).

As seen from Fig. 3, for up to around N � 2500 par-
ticles, the cohesive energy does not depend critically on
the initial condition. As a result, the final state always
becomes a crystalline state with the particles arranged in
nearly concentric double shells. However, for systems
with a larger number of particles, an initial spherical
truncated simple cubic (sc) structure with one �q1; m1�
particle and one �q2; m2� particle forming a basis pair
oriented along the �111� direction gives rise to a lower
value of Ucoh than other initial spherically truncated
165001-3
crystalline structures or disordered states. By a detailed
analysis of the final particle distributions of larger par-
ticle ensembles, we find that in the case of an initial sc
structure, clusters of sc structures remain already when N
exceeds 	2500, and from the largest simulated systems
with N � 106, the main part of the crystal remains in a sc
structure, indicating that the ground state of an infinite
system will be a sc structure. The insets of Fig. 3 present
projection of central regions of crystals with N � 20 288
particles. Here the characteristics of fluid and sc struc-
tures are clearly seen.

The introduced effective Wigner-Seitz radius ~aa in
Eq. (4) can be justified by the results presented in Fig. 4.
In Fig. 4(a) the values given by Eq. (4) are compared with
values derived from MD simulations. The plot considers
two sets of simulations for systems ranging from 102 to
106 particles with �1; �2 � 0:5 and �1 � 1, respectively.
The results indicate that Eq. (4) is a reasonable definition
for an effectiveWigner-Seitz radius. The validity of Eq. (4)
is furthermore supported by Fig. 4(b), where values of ~aa
calculated by Eq. (4) are compared with the simulated
value for various values of �1. Again a nearly perfect
agreement is found.

The presented work has thus far been focused on
very cold systems with m2 � 2m1 and q2 � 2q1, but
several less systematic series of simulations on cold sys-
tems with m2 � p 
m1 and q2 � p 
 q1, where p � 3; 4; 5
and 8 give the same main conclusions, including the
165001-3
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FIG. 4. (a) Wigner-Seitz radii deduced from simulations for
pure N �q1; m1� particle systems (�) and for mixed systems
with an equal amount of �q1; m1� and �q2; m2� particles (�).
The solid and dashed lines are the corresponding predicted
Wigner-Seitz radius from Eq. (4). (b) The effective Wigner-
Seitz radii given by Eq. (4) (solid line) and derived from
simulations of systems consisting of 20 288 particles (�) for
various values of �1.
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results represented by Eqs. (2) and (4). We have further-
more performed several simulations to test the sensitivity
of the mixing on the charge-to-mass ratio of the two
particle types, and we have found that a difference of
one per thousand is enough to observe at least partial
segregation of the two species. The structural develop-
ment that appears when cooling bicomponent systems
down to the very low temperatures considered in the
present Letter is an interesting issue to study in the future.

In summary, we have shown that the ground state of
two-component particle systems with identical charge-
to-mass ratios consists of a number of double structured
shells surrounding a mixed inner core. The sc structure is
the ground state of an infinite 50%:50% system. For the
specific case of m1; q1 and m2 � 2m1; q2 � 2q1, we have
found for a particle number larger than 	2500 that clus-
ters of sc structures in the core are energetically favorable.
Finally, we have shown that on a coarse scale (larger than
the Wigner-Seitz radius), the two species mix completely
independent of the relative abundances. This has led to a
definition of a single effective Wigner-Seitz radius for
bicomponent systems.
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