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43Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy

44University of Mississippi, University, Mississippi 38677, USA
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We present measurements of the branching fractions of the decays B� ! �0K� and B0 ! �0K0. For
B0 ! �0K0S we also measure the time-dependent CP-violation parameters S�0K0S

and C�0K0S
, and for

B� ! �0K� the time-integrated charge asymmetry Ach. The data sample corresponds to 88:9� 106

BB pairs produced by e�e� annihilation at the ��4S�. The results are B�B� ! �0K�� 	 �76:9
 3:5

4:4� � 10�6, B�B0 ! �0K0� 	 �60:6
 5:6
 4:6� � 10�6, S�0K0S

	 0:02
 0:34
 0:03, C�0K0S
	 0:10


0:22
 0:04, and Ach 	 0:037
 0:045
 0:011.

DOI: 10.1103/PhysRevLett.91.161801 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh
the interference between mixing and decay involving
the CP-violating phase � 	 arg��VcdV

� =VtdV
� � of the

cur via a CKM-favored (though color suppressed) b! c
tree amplitude.
Nonconservation of CP in the neutral B meson system
has been clearly established [1,2] in decays to charmo-
nium such as B0! J= K0S. The CP effect arises from

cb tb
Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix,
and appears experimentally as an asymmetry in the
time evolution of the B0B0 meson pair. These decays oc-
161801-3
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Here we report results of a similar analysis of the decay
B0 ! �0K0S, a CKM-suppressed process that is expected
to be dominated by penguin b! s transitions, while the
tree and electroweak contributions are expected to be
small [3–5]. The observed branching fraction is 3–10
times larger than initially expected [3], which has moti-
vated a variety of conjectures by way of explanation,
including flavor singlet [4] and charm enhanced [6] terms.
A recent next-to-leading order QCD factorization calcu-
lation [5] suggests that the decay rate is not significantly
enhanced by these mechanisms, but is adequately pre-
dicted by constructive interference between the penguin
diagrams in which the spectator quark is contained in the
�0 or in the kaon.

The results presented in this Letter are based on data
collected in 1999–2002 with the BABAR detector [7] at
the PEP-II asymmetric e�e� collider [8] located at the
Stanford Linear Accelerator Center. An integrated lumi-
nosity of 81:9 fb�1, corresponding to 88:9� 106 BB
pairs, was recorded at the ��4S� resonance (center-of-
mass energy

���
s

p
	 10:58GeV).

Charged particles from the e�e� interactions are de-
tected, and their momenta measured, by a combination of
a vertex tracker (SVT) consisting of five layers of double-
sided silicon microstrip detectors, and a 40-layer central
drift chamber, both operating in the 1.5 T magnetic field
of a superconducting solenoid. Photons and electrons are
detected by a CsI(Tl) electromagnetic calorimeter.
Charged particle identification (PID) is provided by the
average energy loss (dE=dx) in the tracking devices, and
by an internally reflecting ring imaging Cherenkov de-
tector (DIRC) covering the central region.

From a B0B0 meson pair produced in ��4S� decay we
reconstruct one of the mesons in the final state f 	 �0K0S,
a CP eigenstate with eigenvalue �f 	 �1. For the time
evolution measurement, we also identify the flavor (B0 or
B0) and reconstruct the decay vertex of the partner (Btag).
The asymmetric beam configuration in the laboratory
frame provides a boost of �� 	 0:56 to the ��4S�, which
allows the determination of the proper decay time differ-
ence �t  tf � ttag from the vertex separation of the two
B meson candidates. The distribution of �t is

F��t� 	
e�j�tj=�

4�
f 1��w
 �1� 2w�

� �Sf sin��md�t� �Cf cos��md�t��g:

(1)

The upper (lower) sign denotes a decay accompanied
by a B0 (B0) tag, � is the mean B0 lifetime, �md is the
mixing frequency, and the mistag parameters w and �w
are the average and difference, respectively, of the prob-
abilities that a true B0 (B0) meson is tagged as a B0 (B0).
The tagging algorithm is described in [1], and has a
measured analyzing power [efficiency times �1� 2w�2]
of �28:1
 0:7�%.
161801-4
The parameter Cf measures direct CP violation. If
Cf 	 0, then Sf 	 sin2�eff , with �eff equal to � com-
bined with any weak phase difference arising from
multiple amplitudes in the decay. Assuming the tree
amplitudes are negligible, a deviation from the value
found in charmonium channels can be considered an
effect of phases coming from new physics [9]. Direct
CP violation can also be detected as an asymme-
try Ach 	 ��� � ���=��� � ��� in the rates �
 	
��B
 ! �0K
�.

We reconstruct a B meson candidate by combining a
K� [10] or K0S with an �0 ! ����� (�0

���) or �0!�0�
(�0

��). The K0S ! ����, �0, �! ��, and �0 ! ����

candidates are selected with requirements on the relevant
invariant masses similar to those of our previous analysis
[11]. Distributions from the data and from Monte Carlo
(MC) simulations [12] guide the choice of these selection
criteria. For those quantities taken subsequently as ob-
servables for fitting we retain sidebands adequate to char-
acterize the background as well as the signal. For charged
B decays, the K� candidate must have an associated
DIRC Cherenkov angle between �5� and �2� of the
value expected for a kaon. This requirement rejects 91%
of pions.

The B-meson candidate is characterized by the energy

substituted massmES 	
��������������������������������������������������������
�12 s� p0 � pB�2=E20 � jpBj2

q
and

energy difference �E 	 E�
B �

1
2

���
s

p
, where the subscripts

0 and B refer to the initial ��4S� and the B candidate,
respectively, and the asterisk denotes the ��4S� rest
frame. The resolutions on these quantities measured for
signal events are 29 MeV for�E and 2:9 MeV=c2 formES.
We require j�Ej�0:2GeV and 5:2�mES�5:29GeV=c

2.
Backgrounds arise primarily from combinatorics

among continuum events. To reject these we make use
of the angle �T between the thrust axis of the B candidate
in the ��4S� frame and that of the rest of the charged
tracks and neutral clusters in the event. The distribution of
cos�T is sharply peaked near 
1 for combinations drawn
from jetlike q !qq pairs, and nearly uniform for the isotropic
B meson decays; we require j cos�T j< 0:9.

We obtain the yields and decay time evolution from
extended unbinned maximum likelihood fits, with input
observables �t, �E, mES, m�0 , and a Fisher discriminant
F . The Fisher discriminant [13] combines four variables:
the angles with respect to the beam axis of the B mo-
mentum and B thrust axis [in the ��4S� frame], and the
zeroth and second angular moments of the energy flow
(excluding the B candidate) about the B thrust axis.

We use MC simulation to estimate backgrounds from
other B decays, including final states with and without
charm. These contributions are negligible for the �0

���
modes. For �0

�� we include in the fit a BB component
(which we find to be small).

Since we measure the correlations among the observ-
ables to be small in the (background-dominated) data
samples entering the fit, we take the probability density
161801-4
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function (PDF) for each event to be a product of the PDFs
for the separate observables. The efficiencies and mistag
rates w for each of four tagging categories are measured
with a large sample (Bflav) of decays to fully recon-
structed flavor eigenstates [1]. The signatures of the four
tagging categories are essentially lepton, K� from D�,
K�, and a flavor-correlated inclusive class. For each event
hypothesis j (signal, BB background, continuum back-
ground) and tagging category k, we define the PDF (to be
evaluated with the observable set for event i) as

P i
j;k 	 P j�mES�P j��E�P j�F �P j�m�0 �P j��t; ��t; k�:

(2)

The likelihood function for each decay chain is then

L 	
Y
k

exp

�
�
X
j

Yj;k

�YNk
i

�X
j

Yj;kP i
j;k

�
; (3)

where Yj;k is the yield of events of hypothesis j found by
the fitter in category k, andNk is the number of category k
events in the sample.

The signal PDF factor P sig��t; ��t; k� is equal to the
convolution of F��t; k� [Eq. (1)], with the signal resolu-
tion function, determined from the Bflav sample; ��t is
the error on �t for a given event. We determine the
remaining PDFs from simulation for the signal and BB
background components, and from (mES;�E) sideband
data for continuum background. Each of the functions
P sig�mES�;P sig��E�;P j�F �;P bkg��t; k�, and the peaking
component of P j�m�0 � is parametrized as a Gaussian
function, with or without a second or third Gaussian or
asymmetric width as required to describe the distribution.
Slowly varying distributions (combinatoric background
under mass or energy peaks) are represented by linear or
quadratic dependences, or for mES, by the function
x

��������������
1� x2

p
exp��)�1� x2��, with x  2mES=

���
s

p
and pa-

rameter ). Large control samples of B decays to charmed
final states of similar topology are used to verify the
simulated resolutions in �E and mES.

We compute the branching fractions and Ach from fits
made without �t or flavor tagging. Seven parameters of
the background PDF are free in the fit, along with signal
TABLE I. Signal yield, purity P, detection efficiency *, daughter
mode simulation, measured branching fraction, background (Aqq

ch )
Ytag and purity Ptag, Sf, and Cf for each decay chain, and the com

Mode Yield P (%) * (%)
Q

Bi (%) B �10�6� Aqq
ch (

�0
���K

� 268
 19 78 25 17.4 71
 5 0:6


�0
��K

� 514
 31 55 24 29.5 82
 5 �0:9


�0K� 76:9
 3:5 �0:8


�0
���K

0 48
 8 75 22 6.0 42
 7

�0
��K

0 155
 17 59 23 10.1 76
 8

�0K0 60:6
 5:6

161801-5
and continuum background yields, for �0
��K the BB

background yield, and for charged modes the signal and
background Ach . We compute the branching fractions
from the fitted signal yields, reconstruction efficiencies,
daughter branching fractions, and the number of pro-
duced B mesons, assuming equal production rates of
charged and neutral pairs. To determine the reconstruc-
tion efficiency, including any yield bias of the likelihood
fit, we apply the method to simulated samples constructed
to contain the signal and continuum background popula-
tions expected for data.

Table I shows for each decay chain the branching
fraction we measure, together with the quantities entering
into its computation. The purity estimate is given by the
ratio of the signal yield to the effective background plus
signal, defined as the square of the error on the yield. In
Fig. 1 we show projections ontomES and�E of a subset of
the data for which the signal likelihood (computed with-
out the variable plotted) exceeds a mode-dependent
threshold that optimizes the sensitivity.

For the time evolution we combine the two decay
chains in a single fit with 28 free parameters: Sf, Cf,
signal fractions (two), �0

��K BB background yield (one),
common background F PDF parameters (three), and
separate background �t, mES, �E, m�0 PDF parameters
(20). The last four columns of Table I give the tagged
subsample yields with their purity, along with Sf and Cf.
The Sf and Cf values for B� ! �0K� are included as a
control; they are consistent with zero, as expected. We
show in Fig. 2 the �t projections and asymmetry of the
combined neutral modes for events selected as for Fig. 1.

Most of the systematic errors on yields, which arise
from PDF uncertainties (1%–2%, depending on the decay
mode), have already been incorporated into the overall
statistical error, because their background parameters are
free in the fit. We verify that the likelihood of each fit is
consistent with the distribution found in simulation.

The uncertainty in our knowledge of the efficiency is
found from auxiliary studies to be 0.8% per charged
track, 2.5% per photon, and 4% per K0S. Our estimate of
the B production systematic error is 1.1%. The estimate of
systematic bias from the fitter itself (0%–4%) comes
from fits of simulated samples with varying background
branching fraction product that was forced to 100% in our signal
and signal (Ach) charge asymmetries, tagged subsample yield
bined result for each mode, with statistical error.

%) Ach (%) Ytag Ptag (%) Sf Cf

1:6 �0:1
 6:8 183 92 0:08
 0:20 �0:16
 0:15

0:5 6:3
 5:9 355 63 �0:07
 0:16 �0:14
 0:11

0:4 3:7
 4:5 �0:01
 0:13 �0:15
 0:09

31.6 75 0:75
 0:51 �0:21
 0:35

77.6 61 �0:41
 0:42 0:24
 0:27

0:02
 0:34 0:10
 0:22
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FIG. 2 (color online). Projections onto �t for B0 ! �0K0S data
(points with errors), the fit function (solid line), and back-
ground function (dashed line), for (a) B0 and (b) B0 tagged
events, and (c) the asymmetry between B0 and B0 tags.
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FIG. 1 (color online). The B candidate mES and �E projec-
tions for B� ! �0K� (a),(b) and B0 ! �0K0S (c),(d). The points
with errors represent the data, the solid curves represent the full
fit functions, and the dashed curves represent the background
functions; the shaded histogram represents the �0

���K subset.
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populations. Published data [14] provide the B daugh-
ter product branching fraction uncertainties (3.4%).
Selection efficiency uncertainties are 1% for cos�T and
0.5% for PID. As can be seen in Table I, the branching
fractions we find for B0 ! �0K0 are rather different
(3 standard deviations) as measured with �0 ! ��� or
�0 ! ��. Having exhausted other explanations, we attrib-
ute this difference to a statistical fluctuation, and include
both components in the final measurement.

Using several large inclusive kaon and B-decay
samples, we find a systematic uncertainty for Ach of
1.1% due to the dependence of reconstruction efficiency
on the charge of the high momentum K
.

We find systematic uncertainties for S�0K0S
and C�0K0S

by
varying within their errors the fit parameters controlling
the PDF shapes. We use the Bflav sample to determine the
errors associated with the signal �t resolutions, tagging
efficiencies, and mistag rates, and published measure-
ments [14] for �B and �md. All of these sum to 0.013
(0.014) for S�0K0S

(C�0K0S
). The contributions from the mES,

�E, m�0 , and F PDFs are 0.025 (0.014), for S�0K0S
(C�0K0S

).
We take systematic uncertainties due to SVT alignment
(0.01), beam spot (0.01), boost, and z scale (negligible)
from previous determinations of these effects [1]. We
estimate an uncertainty in C�0K0S

of 0.025 from the effect
on some tagside B decays of the interference between the
CKM-suppressed b! ucd amplitude with that of the
favored b! cud [15].

We have reconstructed about 800 events of B� ! �0K�

and 200 of B0 ! �0K0S with which we have measured the
branching fractions, the time-integrated charge asymme-
try Ach , and the time-dependent asymmetry parameters
S�0K0S

and C�0K0S
. We find S�0K0S

	 0:02
 0:34
 0:03 and
C�0K0S

	 0:10
 0:22
 0:04. These are in agreement with
a previous measurement by the Belle Collaboration [16].
A nonzero value of C�0K0S

would indicate direct CP non-
conservation in the B0 ! �0K0S decay. With C�0K0S

	 0,
161801-6
and provided the decay is dominated by amplitudes
with a single weak phase, S�0K0S

is equal to sin2�. Our
result for S�0K0S

is about 2 standard deviations smaller than
the value obtained with B0 ! J= K0S [1,2], and consis-
tent with zero.

The measured branching fractions are B�B�!
�0K��	�76:9
3:5
4:4��10�6 and B�B0 ! �0K0� 	
�60:6 
 5:6 
 4:6� � 10�6, and we find Ach 	 0:037

0:045
 0:011. The null result for Ach represents a
limit on direct CP nonconservation in B� ! �0K�;
the 90% C.L. limit range is ��0:04; 0:11�, and is consis-
tent with predictions [5]. These values supersede our pre-
vious measurements [11], and are more than a factor of
2 more precise than previous results [11,17]. The branch-
ing fractions depend on R�=0  B���4S� !B�B��=
B���4S� !B0B0�, which we have assumed to be unity.
To compare the decay rates we form their ratio, making
use of measurements [18] of r�=0  R�=0 � ��B��=
��B0� 	 1:14
 0:06 (our average); we find

��B� ! �0K��

��B0 ! �0K0�
	 1:12
 0:13
 0:06
 0:06;

where the last error is from r�=0.
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