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Inflation versus Cyclic Predictions for Spectral Tilt
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We present a nearly model-independent estimate that yields the predictions of a class of simple
inflationary and ekpyrotic or cyclic models for the spectral tilt of the primordial density inhomoge-
neities that enables us to compare the two scenarios. Remarkably, we find that the two produce an
identical result, ns � 0:95. For inflation, the same estimate predicts a ratio of tensor to scalar
contributions to the low l multipoles of the microwave background anisotropy of T=S � 20%; the
tensor contribution is negligible for ekpyrotic or cyclic models, as shown in earlier papers.
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qualitative behavior throughout the period when fluctua-
tions are generated, including the interval when fluctua-

N -folds, sharp features have to be introduced in the
inflaton potential: bumps, wiggles, steep waterfalls, etc.
The recent measurement of the cosmic microwave
background (CMB) anisotropy by the Wilkinson Micro-
wave Anisotropy Probe (WMAP) [1] is consistent with a
primordial power spectrum of density fluctuations that is
scale invariant, Gaussian, and adiabatic. These character-
istics coincide with the predictions of the simplest infla-
tionary scenarios [2].

In this Letter, we show that these are also predicted by
the simplest ekpyrotic or cyclic scenarios [3–5]. We com-
pare the density fluctuation spectra obtained in inflation-
ary [2] and ekpyrotic or cyclic models by computing their
predictions for an important, well-motivated class of
simple models. We find surprisingly similar predictions
for the spectral index of the scalar density fluctuations
[6]. Both predict a red spectrum with index ns � 0:95.
For inflation, the same argument predicts a ratio of tensor
to scalar contributions to the low l multipoles of roughly
20%. Our results for inflation are not new; the particular
form of the argument presented here is a variant of the
discussion in Ref. [7] and by Mukhanov [8] and gives a
similar result to other estimates. But our result for the
ekpyrotic or cyclic models and the similarity to the infla-
tionary prediction is both new and unexpected.

For the ekpyrotic or cyclic models, scale-invariant
fluctuations are generated during a period of slow con-
traction. The notion is that these imprint themselves as
temperature fluctuations in the current expanding phase
[9]. The validity of this idea has been debated [9–11], with
different answers obtained depending on assumptions
about the precise matching conditions at the bounce.
Here we use the recent results of Tolley et al. [12], which
treat the bounce as a collision of branes in five dimen-
sions, derive a unique matching condition, and find a
scale-invariant spectrum of temperature fluctuations
after the bounce.

Both inflation and the ekpyrotic or cyclic models rely
on the equation of state parameter w having a specific
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tions with wavelengths within the present horizon radius
were produced (corresponding to the last N � 60 e-folds
in wavelength). For inflation, the condition on w is that
1� w � 1 and for ekpyrotic or cyclic models it is w � 1
[9,13]. Correspondingly, the Hubble constant H is nearly
constant during inflation and the four dimensional scale
factor a is nearly constant during ekpyrosis. Since these
conditions must be maintained for the duration of an
epoch spanning many more than N e-folds, the simplest
possibility is to suppose that w (and correspondingly H or
a) change slowly and monotonically during that last N
e-folds. More precisely, we take ‘‘simplest’’ to mean that
(i) dw=dN is small, and d2w=dN 2 or �dw=dN �2 neg-
ligible and (ii) in order for inflation (ekpyrosis) to end, H
during inflation (or a during ekpyrosis) decays by a factor
of order unity over the last N e-folds. Tilts or spectral
features that differ from those presented here can be
produced only by introducing by hand unnecessary rapid
variations in w—unnecessary in the sense that they are
not required for either model to give a successful account
of the standard cosmology.

Note that our condition on the time variation of w does
not refer directly to any particular inflaton or cyclic
scalar field potential. In fact, it does not assume that
either scenario is driven by a scalar field at all. But, one
might ask, how does our condition on the equation of state
translate into a condition on an inflaton potential? The
answer is simple: it means that the potential is charac-
terized by a single dimensionful scale, typically HI, the
Hubble parameter during inflation. For example, for
many models the effective potential is well characterized
as M4f��=M�, where � is the inflaton field, HI �
M2=MPl, where MPl is the Planck mass, and f�x� is a
smooth function which, when expanded in �=M, has
all dimensionless parameters of the same order [14]. In
these cases, to produce inflationary models in which there
are rapid changes in the equation of state in the last
2003 The American Physical Society 161301-1



P H Y S I C A L R E V I E W L E T T E R S week ending
17 OCTOBER 2003VOLUME 91, NUMBER 16
But recall that the inflaton field is rolling very slowly
throughout inflation, including the last N e-folds.
Typically, � rolls a short distance, �� � M, during
the last N e-folds. Hence, any sharp features must take
place over a range �� � �� � M, or equivalently, by
introducing new fields or new mass scales much greater
than M in the inflaton potential. For the purposes of
comparing the inflationary and or cyclic predictions, it
makes most sense to consider the class with fewest pa-
rameters and simplest uniform behavior of the equation of
state, a class which is also well motivated in both models.

Recently, Gratton et al. [13] analyzed the conditions
on the equation of state w required in order for quan-
tum fluctuations in a single scalar field to produce
nearly scale-invariant density perturbations, including
models which (in the four dimensional effective descrip-
tion) bounce from a contracting to an expanding phase.
Their analysis showed that there are only two cases which
avoid extreme fine-tuning of initial conditions and/or
the effective potential: w � �1 (inflation) and w � 1
(the ekpyrotic or cyclic scenario).

Following Gratton et al. [13], we discuss the production
of long wavelength perturbations in the gauge invariant
Newtonian potential , which completely characterizes
the density perturbation. Defining u � a=�0 (hence-
forth, primes denote differentiation with respect to con-
formal time �), then a Fourier mode of u with wave
number k, uk, obeys the differential equation

u00k �
�
k2 �

����

�2

�
uk 
 0; (1)
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�1� ���2�
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�
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d2 ln ���
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�
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where H 
 a0=a2 is the Hubble parameter, and where ��� is
related to the equation of state parameter w by

��� �
3

2
�1� w� : (3)

We have introduced the dimensionless time variable N ,
defined by

N � ln

�
aendHend

aH

�
; (4)

where the subscript ‘‘end’’ denotes that the quantity is
to be evaluated at the end of the inflationary expan-
sion phase or ekpyrotic contraction phase (correspond-
ing to w � 1). Note that N measures the number of
e-folds of modes which exit the horizon before the
end of the inflationary or ekpyrotic phase. [N.B. dN 

� ���� 1�dN, where N 
 ln a in Ref. [13].] Indeed, defin-
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ing as usual the moment of horizon crossing as kN 
 aH
for a given Fourier mode with comoving wave number
kN , then

N 
 ln

�
kend
kN

�
; (5)

where kend is the last mode to be generated.
For nearly constant w (or constant ���), the unperturbed

equations of motion have the approximate solution

a��� � ����1=� ����1�; H 

1

� ���� 1�a�
: (6)

Substituting the second of these expressions in �, we find

���� �
1

�1� ����2

�
����

�1� ���2�
2

�
d ln ���
dN

��
; (7)

where we have assumed that the higher-order derivative
terms d2 ln ���=dN 2 and �d ln ���=dN �2 are much smaller
than d ln ���=dN .

With the approximation that � is nearly constant for all
modes of interest, Eq. (1) can be solved analytically, and
the resulting deviation from scale invariance is simply
given by the master equation

ns � 1 � �2� � �
2

�1� ����2

�
����

�1� ���2�
2

�
d ln ���
dN

��
:

(8)

Inflation.—Inflation is characterized by a period of
superluminal expansion during which w � �1; that is,
��� � 1. In this case, Eq. (8) reduces to

ns � 1 � �2 ����
d ln ���
dN

; (9)

as derived by Wang et al. [14].
The next step consists in rewriting the above in terms

of N only. For this purpose, we need a relation between ���
and N . During inflation, the Hubble parameter is nearly
constant, but the end means that H begins to change
significantly. So, if we are considering the last N
e-folds, then, using Eqs. (6) and the definition of N
[see Eq. (4)], it must be that H decays by a factor of order
unity over those N e-folds or

Hend

H



�
a

aend

�
���
� e� ���N � e�1; (10)

or

��� �
1

N
: (11)

Assuming that this relation holds approximately for all
relevant modes, we may substitute in Eq. (9) and obtain

�ns � 1�inf � �
2

N
�

1

N

 �

3

N
: (12)

Note that, in this approximation, the two terms on the
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right-hand side of Eq. (12) are both of order 1=N .
Figuring that our approximation is good to order 1=N
or a few percent, the result is in agreement with the tilt
predicted by simple inflationary models [15].

To obtain a numerical estimate of ns, we may derive an
approximate value for N from the observational con-
straint that the amplitude of the density perturbations,
��=�, be of order 10�5. In the simplest inflationary
models, ��=� is given by [6]

��
�

�

�
Tr

MPl

�
2
����1=2 �

�
Tr

MPl

�
2
N 1=2 � 10�5; (13)

where Tr is the reheat temperature. On the scale of the
observable Universe today, N has the value [see Eq. (4)]

N 
 ln

�
aendHend

a0H0

�
� ln

�
Tr

T0

�
; (14)

where a0, H0, and T0 are, respectively, the current values
of the scale factor, Hubble parameter, and (photon) tem-
perature. For simplicity, we have assumed that Hend �
T2
r =MPl. Combining Eqs. (13) and (14), we obtain the

constraint

eNN 1=4 � 10�5=2 MPl

T0
; (15)

which implies N � 60. It follows that Tr � 1016 GeV.
If we substitute N � 60 in Eq. (12), we obtain ns �

0:95, within a percent or two of what is found for the
simplest slow-roll and chaotic potentials [16,17].

The prediction for the ratio of tensor to scalar contri-
butions to the quadrupole of the CMB for a model with
70% dark energy and 30% matter is, then, [16–18]

T=S � 13:8 ��� �
13:8
N

� 23%; (16)

which is very pleasing because it is in the range which is
potentially detectable in the fluctuation spectrum and/or
the CMB polarization in the near future [19]. [The
WMAP Collaboration [20] uses a different convention
for T=S, defining �T=S�WMAP as the ratio of tensor to
scalar amplitude of the primordial spectrum. The con-
version factor to our T=S is �T=S�WMAP � 1:16 �T=S�.]

It is sometimes said that it is easy to construct models
where T=S is very small, less than 1%, say. The argument
is that the amplitude of tensor fluctuations is proportional
to H2, and a modest decrease in the energy scale for
inflation reduces the tensor amplitude significantly.
However, one must also consider Eq. (16) combined
with Eq. (11). From Eq. (16), making T=S less than 1%,
for instance, requires ��� < 10�3, which implies N >
1000. Since we are interested in T=S at N � 60, how-
ever, the only way to accommodate such a small ��� at
N � 60 is to have ��� make a rapid change at some point
between N � 60 and the end of inflation. This is pre-
161301-3
cisely what is done in models which yield a small T=S
ratio. [Restated in terms of the inflation potential V���, in
order to have T=S � 13:8 ��� � 28 �d lnV=d��2 � 1%, it
must be that d lnV=d� � 0:02, which is too small if
inflation is to end in 60 e-folds unless one introduces a
very rapid change in the slope during the last 60 e-folds.]

Ekpyrotic or cyclic models.—The ekpyrotic phase
is characterized by a period of slow contraction with
w � 1; that is, ��� � 1. In this case, Eq. (8) reduces to [13]

ns � 1 � �
2

���
�

d ln ���
dN

: (17)

Notice that this relation can be transformed into the
expression for inflation, Eq. (9), by replacing ��� ! 1= ���.
Note further that, for all cosmologies, the scale factor is
a / t1= ��� / H�1= ���, where t is proper time. Hence, inflation
( ��� � 1) has a rapidly varying and H nearly constant,
whereas the ekpyrotic or cyclic model ( ��� � 1) has H
varying and a nearly constant. This suggests an interest-
ing duality between the inflationary and ekpyrotic or
cyclic models that reflects itself in the final results.

If the scale factor a��� is nearly constant during the
ekpyrotic (contraction) phase, then the phase ends when
a��� begins to change significantly. In particular, the
condition that the scale factor a��� decays by a factor of
order unity during the last N e-folds reads

aend
a




�
aH

aendHend

�
1=� ����1�

� e�N = ��� � e�1 (18)

[the analog of Eq. (10) for inflation], which implies

��� � N (19)

[to be compared with Eq. (11) for inflation]. Substituting
this expression into Eq. (17), one obtains

�ns � 1�ek � �
2

N
�

1

N

 �

3

N
: (20)

This is the key relation for the ekpyrotic or cyclic models.
In the inflationary case, we estimated N by using the

constraint on the amplitude of density perturbations,
��=�� 10�5. For ekpyrotic and cyclic models, this con-
straint involves more parameters and is therefore not
sufficient by itself to fix N [12,21]. To estimate N , we
rewrite Eq. (4) as

N � ln

�
Tr

T0

�
� ln

�
aendHend

arHr

�
; (21)

where the subscript r denotes the onset of the radiation-
dominated phase. In inflation, we have aend � ar and
Hend � Hr. In the ekpyrotic or cyclic model, however,
the end of ekpyrosis occurs during the contracting phase
whereas the onset of radiation domination is during the
expanding phase. To estimate the ratio aendHend=arHr, we
note that, from approximately the end of ekpyrosis,
through the bounce, and up to the onset of radiation
161301-3
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domination, the Universe is dominated by scalar field
kinetic energy; i.e., w � 1 [4,5]. From Eqs. (3) and (6),
we find a � ����1=2 �H�1=3, and therefore

aendHend

arHr
�

�
HendMPl

T2
r

�
2=3

: (22)

Substituting in Eq. (21), we find

eN 


�
H2

end

TrMPl

�
1=3MPl

T0
; (23)

which is the analog of Eq. (15).
The constraints on Hend and Tr in cyclic models are

analyzed in Ref. [21] and the range of allowed values is
presented. Central values are Tr � 105 GeV and Hend �
105 GeV, which, from Eq. (23), implies N � 60. (By
pushing parameters, N can be made to vary 20% or so
one way or the other.) Substituting N 
 60 in the ex-
pression for the tilt gives ns � 0:95, the same estimate
obtained for inflation.

Conclusions.—Remarkably, our estimates for the typi-
cal tilt in the inflationary and ekpyrotic or cyclic models
are virtually identical. Both models predict a red spec-
trum, with spectral slope

ns � 1 � �
3

N
: (24)

Furthermore, when adding observational constraints such
as the Cosmic Background Explorer (COBE) constraint
that the amplitude of density fluctuations be of order
10�5, both models yield N � 60. This results in an
identical prediction for the spectral tilt of ns � 0:95.
Furthermore, in both models, the time variation of the
equation of state contributes a correction of O�1� that
reddens the spectrum. We have seen that this occurs
because there is fascinating duality ( ��� ! 1= ���) between
inflationary and ekpyrotic or cyclic conditions. This result
was neither planned nor anticipated and suggests a deep
connection between the expanding inflationary phase and
the contracting ekpyrotic or cyclic phase. The key differ-
ence is that inflation also predicts a nearly scale-invariant
spectrum of gravitational waves with a detectable ampli-
tude. The predicted ratio of tensor to scalar CMB multi-
pole moments at low l is T=S � 20%. The tensor
spectrum from cyclic models is strongly blue and expo-
nentially small on cosmic scales [3,22].
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