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Exact Dynamics of a Continuous Time Random Walker in the Presence of a Boundary:
Beyond the Intuitive Boundary Condition Approach
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We derive the exact dynamics of a random walker with arbitrary non-Markovian transport and
reaction rate distribution at a boundary, and present exact solutions in the continuum limit. We find that
the ultimate escape probability of the particle is independent of the transport mechanism in contra-
diction to the long-standing belief based on the conventional approach. We also find a phase transition in
the relaxation kinetics associated with the heterogeneity of the transport media.
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it can describe a wide range of transport phenomena cally long times.
Brownian motion is one of the most mature subjects in
nonequilibrium statistical mechanics, for which we now
have a rigorous description [1]. Examples include the
Fokker-Planck equation and diffusion equation [2], gen-
eralizations of which have also been made to describe
anomalous transport phenomena [3,4]. However, the deri-
vations of these equations have been carried out for a
system in the absence of boundaries, while many inter-
esting systems in nature involve a reaction at a boundary
of the system. In the conventional approach, the effects of
the reaction at the boundary are taken into account merely
by imposing either the absorbing boundary condition
(ABC) [5,6] or the radiation boundary condition (RBC)
on the diffusion equation. Recently, the conventional
approach has been further generalized [7–10].

In contrast to the conventional assumptions, transport
in the vicinity of the boundary may not be described by
the simple diffusion equation because of its coupling to
the reaction and a possibly different physical environment
at the boundary. In addition, in heterogeneous environ-
ments, the transport in bulk can also deviate from diffu-
sion. Furthermore, the validity of the ABC and RBC is a
controversial issue. The result of the conventional ap-
proach with the ABC has an unphysical singularity at
time 0 [11], and Naqvi et al. showed that, in the hydro-
dynamic limit, Brownian motion in the presence of an
absorbing sphere reduces to the conventional approach
with the RBC instead of the ABC [12]. On the other
hand, ABC rather than the RBC gives the correct hydro-
dynamic description of random walk in the presence of a
reaction at a boundary [13]. Little progress has been made
beyond the phenomenological boundary condition ap-
proaches for lack of the relationship of the microscopic
dynamics of the reaction at a boundary to that of the
transport in the vicinity of a boundary [14,15].

In this Letter, we first present the exact stochastic
dynamics of a particle in the presence of a boundary
allowing for arbitrary stochastic transport and reaction
properties. We choose the continuous time random walk
(CTRW) model [16,17] as the starting point, because
0031-9007=03=91(16)=160601(4)$20.00 
[18–22]. We generalize the CTRW to consider a boundary
at which a reaction can take place with an arbitrary
waiting time distribution, taking into account the effects
of an external field. For this model the generalized master
equation (GME) is derived [23], and the solution of the
GME is obtained that becomes exact in the small lattice
constant, �, limit. The exact solution reduces to that of the
conventional approach for a model in which the reaction
and transport are independent Poisson processes, and the
transport at the boundary is the same as that in bulk. For
this model, it turns out the correct condition is the RBC if
the reaction probability at the boundary is proportional to
the size of reaction zone, �, in the small � limit, but it is
the ABC when the reaction probability is constant in �
[13]. Nevertheless, the result for the general case shows
that the ultimate escape probability is independent of the
bulk transport property, such as the diffusion constant, in
contradiction to the long-standing belief based on the
conventional approach.

This approach can deal with the system in which the
reaction and the transport are arbitrary non-Poisson pro-
cesses as well. When the observation time scale is much
longer than the average sojourn time at identical hydro-
dynamic volume elements, the dynamics of any non-
Poisson transport model is in qualitative agreement
with that of a Poisson transport model, irrespective of
the details of the non-Markovian transport model, be-
cause the correlation between jump events becomes neg-
ligible in a time much longer than the average sojourn
time. The average sojourn time increases with environ-
mental heterogeneity and can be comparable to or even
longer than the observation time scale in strongly disor-
dered media. In this case, the relaxation dynamics loses
its universal character, and is dependent on the details
of the correlation between jumps as described by the
sojourn time distribution. Especially when the reactant
transport is subdiffusive [3,18], or when the average
sojourn time is infinite, the exact result never reduces to
the conventional Smoluchowski based on the Poisson
transport model or its generalizations, even at asymptoti-
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We consider a random walk on a one-dimensional
lattice with a lattice constant � in the presence of a
boundary at the leftmost site labeled 0. The other lattice
sites are labeled by n � 1; 2; . . . from left to right. A
random walker located at n initially can move to either
left or right nearest neighbor site with a probability Ln or
Rn, related by the detailed balance condition:
Ln�1p

eq
n�1 � Rnp

eq
n (n � 0), where peq

n is the equilibrium
probability in the absence of reaction.  n�	�d	 denotes
the probability that the jump from site n occurs between
	� 	� d	, where 	 is the time elapsed after the random
walker’s arrival at the site. The sojourn time distribution
 n is assumed to be the same for all sites except for site 0;
i.e.,  n �  (n � 1),  0 �  . If  0

0 denotes the transition
time distribution at site 0 in the absence of reaction, and
�0�	�d	 denotes the probability that the reaction event at
the boundary takes place between time 	� 	� d	 after
the random walker’s arrival at site 0, in the absence of the
jump process back to site 1,  0 is given by  0�t� � ��t� �
 nr0 �t� with ��t� � �0�t�

R
1
t d	 

0
0�	� and  nr0 �t� �

 0
0�t�

R
1
t d	�

0�	�, when the microscopic reaction process
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is independent of the transport process at the boundary.
 0 as given here is normalized, once �0 and  0

0 are
normalized. Note, however, if there is a coupling between
microscopic reaction and transport processes at the
boundary, the relation of ��t� and  nr0 �t� to �0 and  0

0
may not hold. In general, ��t� and  nr0 �t� can be any
positive functions satisfying the normalization of  0.
For the present model, fn�t�dt, the probability that the
random walker arrives at a site n between time t� t� dt
satisfies (in Laplace domain)

f̂f n�u�� ̂ 
L
n�1�u�f̂fn�1�u�� ̂ 

R
n�1�u�f̂fn�1�u���nm �n�0�;

(1)

where  R�1 � 0,  R0 �  nr0 , and  ̂ L�R�n �u� � Ln�Rn� ̂ �u�.
Hereafter, ŷy�u� denotes the Laplace transform of y�t�,
with u being the Laplace variable. fn�t� is related to the
probability pn�t� that the random walker is found at site n
at time t by p̂pn�u� � 	1�  ̂ n�u�
f̂fn�u�=u [24]. From this
relation and Eq. (1), we can obtain the generalized master
equation (GME) for p̂pn�u�:
_̂pp_ppn�u� � D�u�	Ln�1p̂pn�1�u� � Rn�1p̂pn�1�u� � p̂pn�u�
 �n � 2�;

_̂pp_pp1�u� � D�u�	L2p̂p2�u� � R0�u�p̂p0�u� � p1�u�
;

_̂pp_pp0�u� � D�u�	L1p̂p1�u� � R0�u�p̂p0�u�
 � k�u�p̂p0�u�; (2)

with _̂pp_pp �u� � up̂p �u� � � , D�u� � u ̂ �u�=	1�  ̂ �u�
,
j j jm
k�u� � u�̂��u�= 	1�  ̂ 0�u�
, and R0�u� � 	1�
 ̂ �u�
 ̂ nr0 �u�=	1�  ̂ 0�u�
 ̂ �u�. We can see from Eq. (2)
that the dynamics at sites 0 and 1 is different from those at
the other sites due to the reaction at the impenetrable
boundary at site 0. In contrast to Ri, R0�u� (appearing
in the GME for sites 0 and 1) is not a probability, since the
value of R0�u� can be much greater than 1 in the small u
limit, if the first moment limu!0	1�  ̂ 0�u�
=u of  0 is
much smaller than that of  . By adding up all equations
in Eq. (2), one can show that the survival probability
ŜS�u�	�

P
1
j�0 p̂pj�u�
 is related to p̂p0�u� and f̂f0�u� as

_̂SS_SS�u� � �u�̂��u�p̂p0�u�=	1�  ̂ 0�u�
 � ��̂��u�f̂f0�u�.
At first we will relate the quantities pn and S of

interest to the probability h0�tjm�dt that a random
walker initially located at site m arrives at site 0 for
the first time between time t and t� dt, and later we
will obtain the expression for h0. Noting f̂f0�ujm� �
ĥh0�ujm�

P
1
k�1	 ̂ 

nr
0 �u�ĥh0�uj1�


k�1, we get the expression
for the survival probability _̂SS_SS�ujm� of the random walker
in terms of h0 from the relation between _̂SS_SS and f̂f0:

_̂SS_SS�ujm� �
��̂��u�ĥh0�ujm�

1�  ̂ nr0 �u�ĥh0�uj1�
; (3)

where _̂SS_SS�u� � uŜS�u� � 1. Now let us turn our focus
into the probability density distribution, fpng. Noting
the GME for site 1 can be rewritten as
_̂pp_pp1�u� � D�u�	L2p̂p2�u� � R1p̂p1�u�
 � _̂SS_SS

0
�u� with S0�t� �

S�t� � p0�t�, we can transform Eq. (2) in a simpler form:
_̂pp_ppn�u� �D�u�	Ln�1p̂pn�1�u� � Rn�1p̂pn�1�u� � p̂pn�u�


� �n1 _̂SS_SS
0
�u� �n � 1�; (4)

in which p0 is defined by p0�t� � L1p1�t�=R0. Note that
p0 in Eq. (4) (that will not be referred to any further) is a
different quantity from p0 in Eq. (2). However, given that
_̂SS0_SS0�u� in Eq. (4) is exact, the solution fpjg for j � 1 of

Eq. (4) is the same as that of Eq. (2), which is given by

p̂p n�ujm� � ĜG1
n�ujm� � ĜG1

n�uj1�̂ _SS0�u� �n;m � 1�:

(5)

Here, ĜG1
n�ujm� is defined by uĜG1

n�u���nm�
D�u�	Ln�1ĜG

1
n�1�u��Rn�1ĜG

1
n�1�u��ĜG

1
n�u�
 and R0G

1
0 �

L1G
1
1. The exact expression for _̂SS_SS0�u� can be found in

terms of h0�tjm�. From Eq. (3) and the relation between
p̂p0�u� and ŜS�u� given below Eq. (2), we have

p̂p 0�ujm� �
	1�  ̂ 0�u�
ĥh0�ujm�

u	1�  ̂ nr0 �u�ĥh0�uj1�

: (6)

Subtracting Eq. (6) from (3), we get

_̂SS_SS 0�u� � �
	1�  ̂ nr0 �u�
ĥh0�ujm�

1�  ̂ nr0 �u�ĥh0�uj1�
: (7)

We have obtained the expressions for the quantities of
interest in terms of ĥh0�ujm�. To obtain the expressions for
ĥh0�ujm�, we consider the survival probability for a special
case where R0�u� � R0 or  ̂ nr0 =	1�  ̂ 0
 � R0 ̂ =�1�  ̂ �.
From now on,  0,  nr0 , and � that satisfy the latter
condition will be designated by  �

0,  nr�0 , and ��,
160601-2
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respectively. Under this condition, the GME in Eq. (2)
reduces to the generalized Smoluchowski equation (GSE)
in the small � limit: _̂pp_pp�r; u� � D̂D�u�LFPp̂p�r; u� �
��r��̂���u�p̂p�0; u�, (r � 0) with the reflecting boundary
condition �@=@r�	e Up̂p�r; u�
r�0� � 0, where p�r; t� de-
notes the probability density function having the initial
condition p�r; 0� � ��r� r0� with r � �n and r0 � �m.
Here, D̂D�u� � �2D�u�=2, �̂���u� � �u�̂���u�=	1�  ̂ �

0�u�
,
and LFPp̂p�r; u� � �@=@r�fe� U�@=@r�be Up̂p�r; u�cg, where
U�r� denotes the external potential related to the equilib-
rium probability density peq�r� in the absence of reaction
by peq�r� � e� U�r�=

R
dr0 e� U�r

0� with  being inverse
temperature. The solution of the GSE is given by
p̂p�r; ujr0� � ĜG��r; ujr0� � ĜG��r; uj0� _̂SS_SS

�
�ujr0� and

_̂SS_SS ��ujr0� � �
�̂���u�ĜG��0; ujr0�

1� �̂���u�ĜG��0; uj0�
: (8)

Here, ĜG��r; ujr0� is defined by 	u�
D̂D�u�LFP
ĜG

��r; ujr0� � ��r� r0� (r � 0) and
@=@r	e UĜG��r; ujr0�
r�0� � 0. ĜG��r; ujr0� can be ob-
tained by the method of solution developed for the
Fokker-Planck equation [25], noting that ĜG��r; ujr0� �
"D̂D�u��1G�x; zjx0� with z � u"2=D̂D�u�, x � r=", x0 �
r0=", and ĜG�x; zjx0� � 	z� LFP
�1��x� x0�. Here, " is
a chosen length unit. The expression for ĥh0�ujm� can be
obtained in terms of ĜG��0; ujr0� by noting that, in the
small � limit, _̂SS_SS�ujm� for the system with  0 �  �

0 and
 nr0 �  nr�0 should be the same as _̂SS_SS

�
�ujr0� and that

ĥh0�ujm� is irrelevant to the dynamics at the boundary
described by  nr0 and  0:

ĥh 0�ujm� �
uĜG�

0�ujm�

1�  ̂ �
0�u� � u ̂ �

0�u�ĜG
�
0�uj1�

; (9)

with ĜG�
0�ujm� � �ĜG��0; ujr0� and  ̂ �

0�u� � 	1�
�2u=D̂D�u�
�1. In addition, ĜG1

n�ujm� defined below Eq. (5)
reduces to �ĜG��r; ujr0� in the small � limit. With these
relations at hand, Eqs. (3) and (5)–(7) constitute the
solution of Eq. (2) for a finite �, which becomes exact in
the small � limit.

In the small � and u limits, Eqs. (3) and (5) can be
approximated as

_̂SS_SS�ujr0� � �
%̂%�u�ĜG�0; zjx0�

1� %̂%�u�ĜG�0; zj0�
; (10)

p̂p�r; ujr0�dr � 	"2=D̂D�u�
fĜG�x; zjx0�

� ĜG�x; zj0� _̂SS_SS�ujr0�gdx; �r > 0�; (11)

with %̂%�u� � lim�!0	"�̂��u�=�
 and z � u"2=D̂D�u�. In
passing to the small � limit, it is natural to assume that
the reaction probability ��t�dt, and hence �̂��u�, are
proportional to the size of reaction zone, �, so that %̂%�u�
is a finite quantity in the small � limit. On the other
hand, if �̂��u� is set constant in �, %̂%�u� diverges in
the small � limit, and Eq. (10) becomes _̂SS_SS

1
�ujr0� �
160601-3
�ĜG�0; zjx0�=ĜG�0; zj0�, independent of reaction and trans-
port properties at the boundary.

Equations (10) and (11) reduce to the conventional
Smoluchowski result, when the reaction and the transport
at the boundary are the independent Poisson processes
whose sojourn time distributions are given by �0�t� �
k0e

�k0t, and 0
0�t� � kde

�kdt with �k0 � �, and �2kd � D,
provided that the sojourn time distribution for
the transport in the bulk is given by  �t� � 2kde

�2kdt.
For this model, Eq. (10) yields _̂SS_SS�ujr0� �
%SMĜG�0; z0jx0�=	1� %SMĜG�0; z0j0�
 � _̂SS_SS

SM
�ujr0� with

%SM � ��"=D� and z0 � u"2=D, which is the same
as the Smoluchowski result with the RBC. On the
other hand, if k0 and kd are set constant in �, we
obtain _̂SS_SS�ujr0� � ĜG�0; z0jx0�=ĜG�0; z0j0�, which is the
Smoluchowski result with the ABC, in accordance with
[13]. Note that, for the just-mentioned Poisson model, the
transport Eq. (2), in the presence of a boundary, is the
same as that in the absence of a boundary, or R�u� �
R0 � 1=2�O��� as assumed in the conventional ap-
proach. The assumption holds for a Poisson sojourn
time distribution  0

0 if  �t� � 2 0
0�t�

R
1
t d	 

0
0�	�, and if

the reaction and transport at the boundary are indepen-
dent of each other,  nr0 �t� �  0

0�t�
R
1
t d	�

0�	�.
In general, the transport at the boundary can be much

different from that in the bulk because of possibly distinct
physicochemical environments at the boundary, in which
case R̂R0�u� can be much different from R0. For example,
for a general Poisson model having �0�t� � k0e�k0t,
 0
0�t� � knr0 e

�knr0 t, and  �t� � 2kde�2kdt with �k0 � �0,
�2knr0 � �nr0 , and �2kd � D0, we get R̂R�u� � knr0 =�2kd�,
which is different from R0 unless knr0 is 2R0kd.
The survival probability ŜSP of this Poisson model is
similar to ŜSSM given above but with %SM replaced by
%P � �"=�nr0 , and the ultimate escape probability
of the Poisson model SP1�r0�	� limt!1SP�tjr0�
 �
1� limz!0%PĜG�0; zjx0�=	1� %PĜG�0; zj0�
 is independent
of the diffusion constant D, in contrast to the predic-
tion of the Smoluchowski approach, but dependent only
on the dynamics at the boundary, through � and �nr0 .
Equation (10) indicates that, for a general model, the
ultimate escape probability S1�r0�	� limt!1S�tjr0�
 is
independent of the transport property in bulk media,
but dependent only on the dynamics at the boundary
through %̂%�0� � lim�!0	"�̂��0�=�
, and on the geometric
properties of the system, such as the external field and the
spatial dimension through the small z limit of ĜG�0; zjx0�.

As expected, the relaxation of S�tjr0� to S1�t� depends
on the transport property  in the bulk through D̂D�u�;
however, there are two qualitatively different phases of
the asymptotic relaxation behavior. When the average
sojourn time htwi	�

R
1
0 dt t �t�
 is finite, we have D̂D�u� �

D̂D�0� � �2=2htwi, and %̂%�u� � %̂%�0� in the small u limit so
that the relaxation behavior becomes qualitatively the
same as SP of the Poisson model at long times. This
is because the effects of the correlation between the
jump events described by a non-Poisson sojourn time
160601-3
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distribution  becomes negligible at long times t� htwi.
Therefore, at such long times, the relaxation behavior is
not sensitive to the details of  ; only the first moment htwi
of  determines the time scale of the relaxation. On the
other hand, when the observation time scale is not long
compared to htwi, the relaxation behavior is dependent on
the details of the correlation between jump events de-
scribed by  �t�, as given by Eq. (10). Especially when htwi
becomes infinite, the correlation between the jumps per-
sists forever, and the long time asymptotic relaxation
never reduces to that of the Poisson model. For example,
let us consider the reaction system in a linear external
potential given by  U�r� � �br=" with b being a char-
acteristic constant proportional to the external force. For
this model, the expression for ĜG�x; ujx0� is obtained as

ĜG�x;zjx0��
exp	b�x�x0�


2z
�������������
b2�z

p 	�
�������������
b2�z

p
�b�2e�

��������
b2�z

p
�x�x0�

�ze�
��������
b2�z

p
jx�x0j
; (12)

and the asymptotic behavior of S�tjr0� is obtained from
Eq. (10) as S�tjr0� � S1�r0� � R1�r0�	�%� b� jbj��1 �
�r0="�
+�t�, where % � lim�!0�"=��

�1�̂��0�, R1�r0� �
1� S1�r0� � exp	��b� jbj�x0
=	1� %�1�jbj � b�
, and
+̂+�u� � �

��������������
b2 � z

p
� jbj�=u, with z � u"2=D̂D�u�. When

there exists a finite htwi, the asymptotic relaxation
function +�t� is obtained as +�t� � exp��	�	�3=2=2

����
,

p

with 	 � tb2D0="2 (b � 0) and D0 � 2�1�2=htwi.
In contrast, when htwi is infinite, we obtain +�t� �
�"=��2

R
1
t dt  �t� (b � 0), which is dependent on the de-

tails of  �t� [26].
For the pseudofirst order reaction model in which a

number N of mutually independent random walkers in an
initial equilibrium distribution are competing to react
with a target particle fixed at the boundary, we obtain
the exact expression S�tjeq� for the survival probability of
the target molecule: S�tjeq� � exp	��N=V�

R
t
0 d	 k�	�
,

with V being the volume of system, and k̂k�u� �
�"%̂%�u� exp	� U�0�
=z	1� %̂%�u�ĜG�0; zj0�
 in the small
� limit. As ŜS is related to ĥh, k̂k�u� is also related to ĥh
through k̂k�u� � k̂kD�u�%̂%�u�e

� U�0�ŜS�uj0� with k̂kD�u� �
D̂D�u�=". The relations of ŜS and k̂k�u� to ĥh provide efficient
methods to calculate S�t� and k�t� in a complex system,
because h can be obtained much more easily from com-
puter simulation than S and k.

In this Letter, we derived the exact dynamics of CTRW
in the presence of a reaction at a boundary. We found that
the ultimate escape probability is independent of the
transport mechanism in contradiction to the conventional
approach, that the relaxation behavior reduces to that of
the Poisson model in a time much longer than a character-
istic time scale htwi of the transport, when the observation
time scale is smaller than htwi, the relaxation behavior is
not universal, but is dependent on the details of the
sojourn time distribution  �t�. We note that these results
160601-4
can be generalized to a higher dimension in a straightfor-
ward manner.
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