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Triple Points in Solutions of Polydisperse Semiflexible Polymers
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When a mother solution of semiflexible polymers with differing molecular weights is forced to
undergo phase transition, cloud and shadow curves emerge instead of a coexistence curve. For the first
time, we calculate the cloud and shadow curves for an isotropic-nematic transition coupled to
polydispersity and predict novel triple points. Because of the emergence of new triple points,
polydispersity allows the occurrence of anisotropic phases at much lower polymer concentrations
than for the monodisperse solutions.
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and form the coexistence curve. It is also well known
that in the polydisperse case the critical point is no longer

where f is the free energy density in units of kBT, L is the
number of Kuhn segments per chain (proportional to
The collective behavior of semiflexible polymers with
different molecular weights is a subject of great interest
in the liquid crystal, polymer physics, and biophysics
communities. Practical examples originate from biologi-
cal processes like ordering of microtubules [1] which is
pertinent to the shape and stability of the cell. Micro-
tubules are self-assembled stiff objects with the size
distribution arising from polymerization at the plus end
[1]. Another example is actin polymerization [2] generat-
ing stiff objects. Thus, a fundamental problem in under-
standing this collective process is to study ordering in a
polydisperse system of semiflexible polymers.

The ordering induced by stiff polymers with a fixed
molecular weight is already quite complicated due to the
combination of two different types of phase transitions.
The stiffness of the polymer gives rise to the process of
orientational ordering with the first order isotropic-
nematic (IN) phase transition [3–6]. The process of phase
separation typical of usual flexible polymers gets coupled
to this ordering transition resulting in a phase behavior
involving the existence of triple points and the second
order critical points. This problem has already received
considerable attention when the polymers are monodis-
perse [7,8].

On the other hand, the role of polydispersity in general
is a very significant issue in complex fluids [9]. Phase
separation induced by polydispersity for flexible poly-
mers has been studied extensively [10–16]. The new
feature of polydispersity needs the system to be charac-
terized in terms of the cloud and shadow curves
[12,13,16]. The cloud curve is the locus of all points on
the temperature-density space which correspond to the
first occurrence of the phase separation. The shadow
curve is the locus of all those points which coexist with
the points on the cloud curve. As a consequence of poly-
dispersity the concept of the phase coexistence curve has
to be modified. Only in the limit of a monodisperse
system, the cloud curve and the shadow curve merge
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at the minimum of the cloud curve; rather, it is on the
right branch of the cloud curve where the shadow curve
intersects the cloud curve. The problem of polydispersity
is highly nontrivial due to the existence of many different
components owing to the size distribution of the polymer.
Polydispersity brings in the additional complication of a
multicomponent system which is worse for a continuous
distribution in the molecular weight because of the ex-
istence of infinite degrees of freedom. For a bidisperse or
a finite component system, it is theoretically possible to
match the chemical potential of each species in the differ-
ent phases and construct a multicomponent phase dia-
gram. However, this prescription is of little use while
dealing with a system with infinite components (continu-
ous molecular weight distribution).

What is the effect of polydispersity in a system of
semiflexible polymers undergoing isotropic-nematic tran-
sition? Although there has been some work [17–20] on
this issue, the cloud and shadow curves have not yet been
addressed. In this work, we combine the work of Warren
[12] and our previous work on phase diagrams of semi-
flexible polyelectrolytes [8] to calculate the cloud and
shadow curves for a collection of neutral semiflexible
polymers with a Schulz distribution in molecular weight.
We illustrate the phenomenon of splitting of a triple point
by considering polydispersity in semiflexible polymers.
We also find that it is possible to realize an anisotropic
phase at a very low polymer concentration.

First, the free energy of a monodisperse solution of
neutral semiflexible polymers is given, in terms of the
monomer density (�) and the orientational order parame-
ter (S), as
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molecular weight), � is the Flory interaction parameter
(related inversely to temperature), � is the measure of the
stiffness of the chain, and u is the strength of the aniso-
tropic interaction [8,21]. The absolute temperature is de-
noted by T, while kB is the Boltzmann constant. Only
terms up to the fourth order in S are kept in Eq. (1) which
is obtained by minimizing the free energy expression
[Eq. (3.8)] of Ref. [8] with respect to all variables except
the order parameter S. The order parameter S is given by
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and 0 otherwise. The isotropic-nematic transition concen-
tration is �IN. This free energy produces the same class of
phase diagrams already reported in Ref. [8]. The charac-
teristics of these phase diagrams (�-� plots) is the ex-
istence of a second order critical point at the bottom of the
phase coexistence curve with a narrow chimneylike bi-
phasic region which creates a triple point (Fig. 1). On the
left of �IN the phase is isotropic, whereas for concentra-
tions higher than �IN we have a nematic phase.

With the introduction of polydispersity, we extend the
problem by following the procedure given by Warren [12].
The infinite degrees of freedom due to polydispersity is
brought in by considering the chain number density (�) as
another independent variable. For the parent solution, � is
related to the first moment of the distribution function by
hLi� � �, where hLi is the average molecular weight. It is
assumed [12] that the free energy due to polydispersity
depends only on the first moment (hLi). Thus f is modified
for the polydisperse case as follows:
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FIG. 1. �-� phase diagram for a monodisperse system with
the molecular weight L being 100 and � � 8000 and u � 0:005.
The biphasic region is very narrow and appears to be a line in
the graph.
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where � is related to the width of the size distribution
which has been assumed to follow Schulz distribution
[12]. In the limit of very high � we should recover the
results for the monodisperse system. The second term, the
entropy of mixing of the chains, in the free energy has
been modified from the monodisperse case since � is now
an independent variable. The last term in the free energy
accounts for the polydispersity, and its origin can be
found in Warren’s work [12]. To simplify the problem,
we assume that the isotropic-nematic transition concen-
tration is not affected by the distribution function. In
other words, we assume all chains have an aspect ratio
greater than the critical aspect ratio needed to undergo
the ordering transition. Thus, the order parameter S is still
given by the same expression as before. The next step is to
construct the binary phase diagrams in �-� space for the
given � values. By definition, the points on the cloud
curve have the same property as the mother solution;
i.e., for the points on the cloud curve hLi� is equal to
�. The intersection of the �-� phase diagrams with the
physical line hLi� � � defines the points on the cloud
curve. The coexisting phases are found by following the
tie lines in �-� space and thus we construct the shadow
curve. A cartoon of the phase diagram constructed using
the free energy stated above is shown in Fig. 2. Let the �
value corresponding to this diagram be �A. As expected,
due to the first order transition there is a biphasic region in
the phase diagram around � � �IN. The biphasic region
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FIG. 2. Cartoon phase diagram for the polydisperse system
in the hLi�-� space for � � �A. The tie line, the dash-dotted
line, going through the triple point intersects the hLi� � �
physical line at Ac which is a point on the cloud curve, and it is
a triple point since it coexists with two phases As

1 and As
2.
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FIG. 3. (a) A typical cloud curve for a polydisperse system.
The three triple points (Ac, Bc, and Cc) are shown in the graph
by an asterisk (*). The corresponding � values are denoted
by �A, �B, and �C. (b) The full shadow curve is shown by
dotted lines. The coexisting shadow phases for the three triple
points Ac, Bc, and Cc are given by As
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FIG. 4. The hLi�-� phase diagram for � � �B. The triple
point is denoted by Bc and it lies on the physical line. The two
coexisting phases are Bs

1 and Bs
2.
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FIG. 5. The hLi�-� phase diagram for � � �C. The tie line,
shown by the dash-dotted line, through the triple point inter-
sects with the physical line at the point Cc which is on the right
branch of the biphasic region. Thus, it is the triple point on the
cloud curve. The two coexisting phases are Cs

1 and Cs
2.
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in practice is much narrower than the one shown in the
cartoon. The rest of the phase diagram remains similar to
the flexible polymer case [12]. It is important to notice
that the tie lines (dash-dotted lines) are not horizontal. As
a consequence of the biphasic region we get a triple point
in the hLi�-� phase diagram for each �. Sometimes there
is more than one triple point on the cloud curve [Fig. 3(a)]
which can be explained by looking up the corresponding
hLi�-� phase diagrams for respective values of �. The
triple point shown by A corresponds to the situation when
the tie line going through the triple point in the hLi�-�
phase diagram intersects the physical line and the inter-
section point (Ac) is on the phase boundary and it is on the
left of �IN. This immediately suggests Ac coexists with
As
1 and As

2 giving rise to two points on the shadow curve
[see Fig. 3(b)]. Thus, Ac is a triple point on the cloud
158303-3
curve. Now, with an increase in � we reach two special
values of �, � � �B and � � �C, which gives rise to
triple points Bc (Fig. 4) and Cc (Fig. 5), respectively.
The overall cloud curve thus looks like the one shown
in Fig. 3(a), and the shadow curve is shown in Fig. 3(b). It
is also worth mentioning that, due to the existence of the
triple points, there are discontinuities in the shadow curve
which is a known effect of polydispersity [15]. However,
in reality the chimney region is very narrow and it looks
almost like a line. It is almost impossible to distinguish
the two triple points Bc and Cc. A typical phase diagram
(� � 8000, u � 0:005, � � 2, and hLi � 100) is pre-
sented in Fig. 6. As expected, the critical point is located
158303-3
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FIG. 6 (color online). Cloud and shadow curves are shown for
a polydisperse system with � � 2, hLi � 100, � � 8000, and
u � 0:005. The shadow curve is shown by the dotted line. The
narrow biphasic region almost looks like a line. The narrow
chimneylike region for both the cloud and the shadow curve are
almost indistinguishable. The critical point is shown by �. The
two triple points on the right branch are very close and appear
to be only one triple point. Triple points are shown by asterisks
(*). The line joining the asterisks is the line of triple points.
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where the shadow and the cloud curve intersect each other.
It is not possible to distinguish between the two triple
points located on the right branch of the cloud curve. Thus
for all practical purposes, for the given value of the
stiffness, we can assume that there are two triple points:
one is on the left branch of the cloud curve while the other
one is on the right branch of the curve. It is very instruc-
tive to compare the polydisperse phase diagram (Fig. 6)
with the monodisperse phase diagram (Fig. 1) keeping all
the parameters the same. The region of miscibility gets
significantly reduced with the increase of polydispersity
as expected [12]. Splitting of the triple point as a result of
polydispersity has an interesting effect in terms of the
onset of the anisotropic phase. There exists one triple
point on the left branch of the cloud curve corresponding
to very low concentration which has a shadow in the
anisotropic phase. This implies that it is possible to real-
ize an anisotropic phase at a very low concentration just
by controlling the degree of polydispersity even if �IN is
quite high. The location of �IN is simply determined by
the stiffness of the chain. In the limit of the monodisperse
case, the tie line in the hLi�-� phase diagram merges
with the physical line because the allowed phases have
only one molecular weight. This implies that all the triple
points merge into one triple point for a monodisperse
solution as expected [8].

Another interesting feature of the system is that for any
� value between the two triple points there exist a special
value of the density at which the physical line intersects
the tie line through the triple point in hLi�-� space for
that value of �. Thus, we get a line (line joining the ‘‘*’’
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in Fig. 6) of triple points for the density and � value
between the two triple points. This line ends at the two
triple points on the cloud curve.

In summary, we show that the triple point of a solution
with monodisperse semiflexible chains is split into two by
polydispersity. The appearance of the new triple point at a
lower concentration permits the occurrence of a nematic
phase at a very low concentration. These results are rele-
vant to many biological systems where ordering of stiff
polymers is coupled to the polymerization mechanism.
We have not considered the effect of electrical charge or
temperature dependent polydispersity on the calculated
phase diagrams. Splitting of the triple point due to poly-
dispersity can also be viewed from a more general per-
spective relevant to other problems of critical phenomena
with triple points and polydispersity.
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