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We propose a new concept for a two-qubit gate operating on a pair of trapped ions based on laser
coherent control techniques. The gate is insensitive to the temperature of the ions, works also outside the
Lamb-Dicke regime, requires no individual addressing by lasers, and can be orders of magnitude faster
than the trap period, which is presently the speed limit of all two-qubit proposals.
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Trapped ions constitute one of the most promising
systems to implement scalable quantum computation
[1]. There, qubits are stored in long-lived internal atomic
states and a universal set of gates is obtained by manipu-
lating the internal states with lasers and entangling the
ions via the motional states [2]. During the past years a
remarkable experimental progress in building an ion trap
quantum computer has allowed one to realize two-qubit
gates [3—6] and to prepare entangled states [7-9]. The
ultimate challenge now is the development of scalable ion
trap quantum computing, where ions are stored and
moved to different regions to perform the required gates
[10,11]. Basic steps towards this goal have already been
demonstrated experimentally [12].

An important question is to identify the current limi-
tations of the two-qubit gates with trapped ions (given the
fact that one-qubit gates are significantly simpler with
those systems). The ideal scheme should (i) be indepen-
dent of temperature (so that one does not need to cool the
ions to their ground state after they are moved to or from
their storage area); (ii) require no addressability (to allow
the ions to be as close as possible during the gate so as to
strengthen their interaction), and (iii) be fast (in order to
minimize the effects of decoherence during the gate, and
to speed up the computation). This last property has been
identified [1] as a key limitation: in essentially all
schemes suggested so far [2,13—17] one has to resolve
spectroscopically the motional sidebands of the ions with
the exciting laser, which limits the laser intensity and
therefore the gate time.

The two-qubit gate between pairs of ions analyzed
below solves the problem of speed by using mechanical
effects instead of spectral methods to couple the motion
and internal states of the ions. In this way the new limits
on the time of the quantum gate are those of laser control,
which can be orders of magnitude faster than the present
limits dictated by trap design. This implies a significant
step forward towards fast and efficient scalable quantum
computations with trapped ions.

We will first study the dynamics of two ions under the
influence of short laser pulses with varying directions. We
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will prove that there exist certain laser pulse sequences
which perform a phase gate on the two qubits, while
leaving the motional state unchanged. We illustrate this
with two protocols for laser pulses: (i) a sequence of four
pulses which gives a gate time of 7' = 1.08/» with v the
trap frequency, and (ii) a protocol which allows us to
perform a gate in a time T ~ N;2/3/V where Np is the
number of laser pulses. Finally, we will complement our
study of the gate dynamics with an analysis of possible
errors, which includes fluctuations of the intensity or the
duration of the pulses, and temperature. The gate will be
shown to be extremely robust to these perturbations.

We consider two ions in a one-dimensional harmonic
trap, interacting with a laser beam on resonance. The
Hamiltonian describing this situation [2] can be written
as H= H, + H,, where Hy = v.ata + v,bTb describes
the motion in the trap and

H, - @ o eineat a2, (0 +)

+ —Qz(t) o ein@ T =i/, (bT+h) L oo (1)

Here, v. = v and », = /3y, are the frequencies of
the center of mass and stretching mode, respectively;
a and b are the corresponding annihilation operators,
and 1, = 1n//2 and 7, = nJ4/3 are proportional to
the Lamb-Dicke parameter, 7. The Rabi frequency () is
the same for both ions, since we have not assumed indi-
vidual addressing. Also notice that replacing 1 with (—1)
is equivalent to reversing the direction of the laser beam.

In the following we will consider two different kind of
processes: (i) free evolution, where the laser is switched
off () = 0) for a certain time; (ii) sequences of pairs of
very fast laser pulses, each of them coming from opposite
sides. If we denote by &1 the duration of a pulse and by ()
the corresponding Rabi frequency, we are interested in
the limit 6t — 0 with Q 6t = 7. Processes (i) and (ii)
will be alternated [see Fig. 1(a)]: at time #; a sequence of
Z; pulses is applied, followed by free evolution until at
time ¢, another sequence of z, pulses is applied followed
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FIG. 1. (a) Trajectory in phase space of the center-of-mass
state (X,, P,) [where (X, + iP.)/+/2 = (a)] during the two-
qubit gate (solid line), connecting the initial state (black circle)
to the final state (grey circle) at gate time 7. The time evolution
consists of a sequence of kicks (vertical displacements), which
are interspersed with free harmonic oscillator evolution (mo-
tion along the arcs). A pulse sequence satisfying the commen-
surability condition (3) guarantees that the final phase space
point is restored to the one corresponding to a free harmonic
evolution (dashed circle). The particular pulse sequence plotted
corresponds to a four pulse sequence given in the text
(protocol I). (b) shows how the laser pulses (bars) distribute
in time for this scheme.

by free evolution and so on. The z, are integer numbers,
whose sign indicates the direction of the laser pulses.
For a pulse sequence, consisting of kicks interspersed
with free harmonic time evolution (Fig. 1), we write the
evolution operator as U= U.U, where U, =
N U..(At, z;) has contributions of the center of
mass and relative motions,

Uc(tkr Zk) — e*i2@m(a+a*)(oﬁ+0'§)e—iVCAtkaTa’

U1, 2) = e mHbei=os) =i At

The integers z; indicate the direction of the initial pulse
in the sequence of pairs of very fast laser pulses, each of
them coming from opposite sites.

In order to fully characterize ‘U, we have only
to investigate its action on states of the form
|11y |B),, where i, j =0,1 denote the computa-
tional basis, and |a) and |B) are coherent states. This
task can be easily carried out once we know the action
of U =[]}, U(¢s pi) on an arbitrary coherent state
|a), where

U(,, py) = e irlatal)g=idyata

We obtain Ula) = eé|a), with 6, =3* | ¢,, and
where
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The crucial point is to realize that if Y | p;e'® =0
the motional state |a) after the evolution is the same as if
there were only free evolution [Fig. 1(a)], and a global
phase ¢ appears which does not depend on the motional
state. We obtain the conditions

zee =0, (3)

M=

N
Co=Yge™=0  C=
k=1

k=1

If these commensurability conditions are satisfied, the
motional state of the ion will not depend on the qubits and
the evolution operator will be given by

U(®) = £l00i 05 p=iv.Tat j —iv,ThTh. 4)

The value T is the total time required by the gate and

N m—1 :
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where Aty,, = t, — t,,. Therefore, if Egs. (3) are fulfilled,
and ©® = 77/4 we will have a controlled-phase gate which
is completely independent of the initial motional state,
i.e., there are no temperature requirements.

It is straightforward to show that for any value of T it is
always possible to find a sequence of laser pulses which
implements the gate, and therefore the gate operation can
be, in principle, arbitrarily fast. The search for this
sequence may be done numerically, or even semianalyti-
cally. In the following we give two simple (not optimized)
protocols.

The first protocol (protocol I) requires the least number
of pulses to produce the gate in a fixed time T =
1.08(27/v). The recipe is illustrated in Fig. 1, which
provides the phase space plots for the evolution of the
motional state. The sequence of pulses is defined as
(Zn/N7 tn) = {(7) _T]), (1: _72)’ (_1’ 7-2): (_')’, Tl)}' Here
0 <y =cos(f) <1.0 is a real number, which may be
introduced by tilting both lasers a small angle 6 with
respect to the trap axis. It is always possible to find a
solution to Eq. (3) with 7, = 0.538(4)(27/v) > 7, > 0.
The results are summarized in Fig. 2. As shown in
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FIG. 2. (a) Number of pairs of pulses and (b) relative angle of

the two laser beams required to produce a phase gate using the
first exact scheme developed in the paper.
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Fig. 2(a), for realistic values of the Lamb-Dicke parame-
ter [4] we need only to apply the sequence of pulses 1 or
2 times to implement a phase gate.

The second protocol (protocol II) performs the
gate in an arbitrarily short time 7. The pulses are distrib-
uted according to (z,/N,t,) ={(—=2, —7), (3, —7,),
(=2, —73), (2, 73), (=3, 75), (2, 7;)}. The process requires
N, =3 |z,| = 14N pairs of pulses and takes T = 27,.
As Fig. 2 shows, the number of pulses increases with
decreasing time as N, o 773/2,

In order to study the main potential limitations, we
define the error of the gate E in terms of the gate fidelity
[18] asE=1-— Trmot{Qmotpmothtwt}' Here Trmot and Trim
denote traces over motional and internal degrees of free-
dom, and Q,,,,; = Tr, {U(7/ 4)Ujeal} depends on U, the
gate performed in the presence of imperfections.

We now turn to a discussion of the possible sources of
errors. A limiting factor for the gate is the anharmonic-
ities of the restoring forces. The more pulses we apply, the
larger the relative displacement of the ions, as Fig. 3(b)
shows. When the ions become too close to each other, the
increasing intensity of the Coulomb force can lead to a
breakdown of the harmonic approximation which is im-
plicit in Eq. (1). In order to analyze this effect, we have
made a perturbative analysis of the anharmonic correc-
tions induced by the Coulomb force and found that for
vT < 1 they cause an error E = |0.4a,/d|*/Q2mvT),
where q is the ground state size of the external potential
and d is the ion separation in equilibrium. For typical
parameters and imposing an error E =~ 10~* we obtain
vT =~ 1073, Similar results are obtained when applied to
the anharmonicities of the trap itself.

We have also studied the influence of errors in the laser
pulses of our scheme. Up to now, our analytical calcula-
tions assumed that one may neglect the influence of the
trap during the laser pulses. To validate this assumption
we have simulated numerically a system of two ions with
only one vibrational mode. We have used the exact se-
quences to produce the phase gate using only eight laser
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FIG. 3. (a) Log-log plot of the number of pairs of pulses using
protocol II, as a function of T, for n = 0.178 [4] [exact result
(solid line) and a rough estimate Np = 40(vT/27) %2 (dashed
line) based on perturbative calculations]. (b) Maximum relative
displacement, X, (solid line), and maximum momentum
acquired, P, (dashed line), for scheme II, with, X, =

max[(x,(1))/ao), and P, max[{p,(1))ao/h].
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pulses. In Fig. 4(a) we plot the error as a function of the
pulse duration, 7 = 77/2€). The longer the pulse, the more
important the effect of the trap, and the larger the error.
But even for relatively long pulses, we obtain a fidelity
which is comparable to the results obtained in current
setups [4—6]. We have also studied the influence of inten-
sity noise, or, equivalently, random errors in the pulse
duration. The larger the amplitude of the error the lower
the fidelity of the gate, as Fig. 4(b) shows.

As mentioned before, the scheme is insensitive to tem-
perature. If the commensurability condition (3) is not
perfectly satisfied due to, for example, errors in the tim-
ing of the laser pulses, or misalignment of the lasers, then
the corresponding contribution to the gate error is E =
(Cl+ C3 +4C,C, — 6)/8, with

Cl = eXP[_(l/z + ka/ﬁVc)lzncCclz]y
C2 = exp[_(l/z + ka/ﬁVr)lanrlz];

which is a smooth function of temperature 7.

Finally, we include some remarks regarding the experi-
mental implementation. First, it is not necessary to kick
the atoms using pairs of counterpropagating laser beams.
The same effect may also be achieved in current experi-
ments by reverting the internal state of both ions simul-
taneously. One needs only a laser aligned with the trap to
kick the atoms and another laser orthogonal to the axis of
the trap to produce the NOT gate. The second and more
important remark is that it is possible to avoid errors in
the laser pulses by using more sophisticated kicking
methods. One possibility consists in using stimulated
Raman adiabatic passage (STIRAP) [19,20]. Only one
of the qubit states would be connected by two on-reso-
nance laser beams to a third atomic state, |e’). In the first
part of the kicking process, the Rabi frequencies (1, and
), are adiabatically switched on and off, respectively.
The momenta of both laser beams should be different, so
that as we slowly proceed from Q,/€Q, = 0 to the oppo-
site regime ,/Q, =0, the ions in the state |1) are

10° 10°
a)

10° 10* 10° 10" 100 10° 10"
v/21 €

FIG. 4. Four kicks sequence for n = 0.178 and T = O(1/v):
(a) Error vs v7. It perfectly fits the estimate E = 2(7v/2m)>.
(b) Mean error for random errors in the duration 7, =
7/(2Q)(1 + €r), with random numbers r; uniformly distrib-
uted in [—1/2, 1/2] (solid line corresponds toE = 4€>.
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completely transferred to the new dark state |e) and get a
kick [1) — e/« ~k)%|¢’). Next we must change the sense of
the laser beams (k, , — —k, ;) and perform the adiabatic
transfer from Q,/Q, = 0to Q,/Q, =~ 0. The advantages
of this method are (i) the system remains all the time in a
dark state, avoiding spontaneous emission; (ii) the pro-
cess is insensitive to fluctuations of the intensity; (iii) the
duration of the pulse need not be precisely adjusted, and
(iv) the intensity of the laser need not be the same for both
ions. Finally, one should also mention that for short pulses
the laser bandwidth may get broad, so that in order to
avoid problems with the hyperfine atomic structure one
may use atomic species with no nuclear spin.

Summing up, in this work we have developed a new
concept of two-qubit quantum gate for trapped ions, in
which the trap frequency no longer poses a limitation on
the speed of the gate. The limitations in that case come
from (i) the anharmonicities of the restoring force that
the ions experience when pushed far away from each
other, and (ii) the ability to control the laser pulses. The
first limitation still allows one to perform the gates in a
time which is 3 orders of magnitude smaller than the one
imposed by the trap frequency. The second limitation can
be overcome by using adiabatic passage techniques. In
addition, our scheme is independent of the temperature,
requires no addressability, and works beyond the Lamb-
Dicke regime. In any case, the rapid experimental
progress in laser control with very short pulses indicates
that it may soon be possible to perform quantum gates
with a very high speed.
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