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Orbital Entanglement and Violation of Bell Inequalities in Mesoscopic Conductors
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We propose a spin-independent scheme to generate and detect two-particle entanglement in a
mesoscopic normal-superconductor system. A superconductor, weakly coupled to the normal conductor,
generates an orbitally entangled state by injecting pairs of electrons into different leads of the normal
conductor. The entanglement is detected via violation of a Bell inequality, formulated in terms of zero-
frequency current cross correlators. It is shown that the Bell inequality can be violated for arbitrary
strong dephasing in the normal conductor.
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FIG. 1. The system. A single superconductor (S) is connected
to four normal arms via two tunnel barriers (1 and 2) (thick
black lines). The arms are joined pairwise in beam splitters A
single [12] superconductor is weakly coupled to a normal and B and end in normal reservoirs � and �.
Entanglement is one of the most intriguing features
predicted by quantum theory [1]. It leads to correlation
between distant particles, which cannot be described by
any local, realistic theory [2]. This nonlocal property of
entanglement has been demonstrated convincingly in op-
tics [3], where entangled pairs of photons have been
studied over several decades. Apart from the fundamental
aspects, there is a growing interest in using the properties
of entangled particles for quantum cryptography [4] and
quantum computation [5].

Recently, much interest has been shown for entangle-
ment of electrons in solid state systems. A controlled gen-
eration and manipulation of electronic entanglement is of
importance for a large scale implementation of quantum
information and computation schemes. Electrons are,
however, in contrast to photons, massive and electrically
charged particles, which raises new fundamental ques-
tions and new experimental challenges. Existing sugges-
tions are based on creating [6,7], manipulating, and
detecting [8–10] spin-entangled pairs of electrons. This
requires experimental control of individual spins via spin
filters or locally directed magnetic fields on a mesoscopic
scale. Here we propose a spin-independent scheme for
creating and detecting orbital entanglement in a meso-
scopic normal-superconductor system.

We show that a superconductor, weakly coupled to a
normal conductor (see Fig. 1), creates an orbitally en-
tangled state by emitting a coherent superposition of pairs
of electrons into different leads of the normal conductor.
In the tunneling limit, the zero-frequency correlation
between currents flowing into different normal reservoirs
is shown to be equivalent to a pair coincidence measure-
ment: only correlations between the electrons from the
same entangled pair contribute. As a consequence, a
standard Bell inequality (BI) can be directly formulated
in terms of the zero-frequency current correlators.We find
that a violation of the BI, demonstrating the entanglement
of the pair state, can be obtained for arbitrary dephasing
in the normal conductor.

We first consider a simplified version of the system [11]
(see Fig. 1) (a more detailed discussion is given below). A
0031-9007=03=91(15)=157002(4)$20.00 
conductor, a ballistic two-dimensional electron gas, via
two tunnel barriers (1 and 2) with transparency � � 1.
The normal conductor consists of four arms, 1A, 1B, 2A,
and 2B, with equal lengths L. The arms 1A and 2A (1B
and 2B) are crossed in a controllable beam splitter A�B�,
parametrized via the angle �A��B�, and then connected
to normal reservoirs �A and �A ( � B and �B).

The splitters [13] are assumed to support only one
propagating mode. The states j�; �i and j�; �i for elec-
trons going out into the normal reservoirs and the states
j1; �i and j2; �i of the electrons emitted from supercon-
ductor are related via a scattering matrix �� � A; B�:�

j�; �i
j�; �i

�
�

�
cos�� � sin��

sin�� cos��

��
j2; �i
j1; �i

�
: (1)

The angles �A and �B can be tuned between 0 and �=2 by
turning the splitter from ‘‘open,’’ when the electrons are
transmitted through from 1�2� to ����, to ‘‘closed,’’ for
complete reflection from 1�2� to ����. We consider the
low temperature limit, kT � eV. A negative voltage
�eV, smaller than the superconducting gap 	, is applied
to all the normal reservoirs and the superconductor is
grounded. The size of the system is smaller than the phase
breaking length.

We first present a simple and transparent explanation
of how the entanglement is generated and detected, a
rigorous derivation follows below. The superconductor
emits pairs of particles into the normal arms. Since the
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FIG. 2. Upper left: In the filled stream of incoming holes
(open circles) from the normal reservoir, occasionally a hole is
backreflected as an electron (solid circles). The ‘‘missing hole’’
(i.e., an electron) and the Andreev reflected electron constitute
the pair emitted from the superconductor. Lower left: The
correlation time �c � �h=eV (width of the wave packet) and
the average time between emission of two subsequent pairs
e=I � �h=eV�2 � �c of the current correlator. The small
time difference �h=	 � �c between the emissions of the two
electrons in the pair is shown as a split of the wave packet.
Right: The transmission probabilities TA (dashed line), T0

A
(dotted line), and T0

B (solid line) as a function of TB
[T� � cos2�����, giving optimal violation of the Bell in-
equalities for dephasing parameters � � 1 and � � 0:3.
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superconductor is a single, coherent object, the state of an
emitted pair is a linear superposition of states corre-
sponding to a pair emitted through barriers 1 and 2.
The emitted pair can either split, with one electron going
to each splitter A and B, or both electrons can go to the
same splitter. However, the latter process does not con-
tribute [14] to the quantity of interest, the current cross
correlations, to leading order in pair emission (Andreev
reflection) probability, proportional to �2. The relevant
part of the state of the emitted pair can thus be written as

j
i � j
12i 	 j
ABi; j
12i � �j11i� j22i�=
���
2

p
; (2)

a product of a state j
12i, orbitally entangled with respect
to emission across barriers 1 and 2 (called 12-space
below), and a state j
ABi, describing one electron going
towards A and one towards B, containing all additional
information, such as energy and spin dependence. The
splitters A and B rotate the state j
12i [see Eq. (1)].

The entanglement, giving rise to a nonlocal correlation
of the two electrons, is detected by violation of a BI. We
point out that a violation does not, due to the solid state
environment, rule out all possible local, realistic theories.
Earlier works on BI in conductors started from an en-
tangled two-electron state at a single energy [9], not
appropriate for our situation. Reference [10] formulates
a BI in terms of correlators of number of particles trans-
ferred in a given time �. In the tunnel limit, for � shorter
than the average emission time of the pairs but longer
than the coherence time, the BI is expressed in terms of
zero-frequency current correlators. Here instead we con-
sider explicitly the entangled two-particle state in Eq. (2)
and a BI is formulated based on the observation that the
zero-frequency noise correlations is proportional to the
probability of joint detection of the two electrons in
the pair. We recall that in the original formulation [2], a
source emitting spin-1=2 singlets was considered. The BI,
as formulated in Ref. [15],

S � jE��A; �B� � E��A;�0
B� � E��0

A; �B� � E��0
A; �0

B�j


 2; (3)

is expressed in terms of spin correlation functions [16]

E��A;�B� � P�� � P�� � P�� � P��: (4)

Here P����A; �B� are the joint probabilities to observe
one particle in detector A with a spin � � ������
denoting up (down)] along the �A direction, and the other
in detector B with a spin � � � along the �B direction.
The joint probabilities are given by

P����A; �B� � f1� �� cos�2��A � �B��g=4: (5)

Inserting P�� into Eq. (4), we get E��A;�B� �
cos�2��A � �B��. We then find that for angles �A �
�=8, �B � �=4, �0

A � 3�=8, and �0
B � �=2, the BI in

Eq. (3) is maximally violated, i.e., we get S � 2
���
2

p
.
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In our orbital setup (see Fig. 1), it is clear from Eq. (2)
that the 12-space plays the role of a pseudospin space and
the normal reservoirs act as detectors. We can thus, as in
Ref. [2], formulate a BI in terms of an observable which is
proportional to the corresponding joint probability
P����A; �B� for our state j
12i [here, �; � � � denote
the reservoirs; see Fig. 1]. We find below that the zero-
frequency current cross correlator is given by

S�� �2
Z 1

�1
dth�ÎI�A�t��ÎI�B�0�i�P0P����A;�B�: (6)

Here, P0 � 2e3V�2=h, and �ÎI���t� � ÎI���t� � hÎI��i is
the fluctuating part of the current ÎI���t� in reservoir
��. This leads to the important result that the Bell
inequality, Eq. (3), can be directly formulated in terms
of the zero-frequency current correlators in Eq. (6). We
note [16] that when substituting P�� with S�� in Eq. (4),
we must divide by the sum of all correlators S�� �
S�� � S�� � S�� � P0, which just eliminates P0.

The simple result in Eq. (6) can be understood by
considering the properties of the time-dependent corre-
lator h�ÎI�A�t��ÎI�B�0�i. It is finite only for times t & �c,
where �c � �h=eV is the correlation time of the emitted
pair (see Fig. 2). In the tunneling limit under considera-
tion, � � 1, the correlation time is much smaller than the
average time between the arrival of two pairs e=I �
�h=eV�2. As a result, only the two electrons within a
pair are correlated with each other, while electrons in
different pairs are completely uncorrelated. Thus, the
zero-frequency current correlator in Eq. (6) is just a
coincidence counting measurement running over a long
time, collecting statistics over a large number of pairs.
157002-2
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For a rigorous derivation of the above result, we first
discuss the role of the superconductor as an emitter of
pairs of orbitally entangled electrons. Since the system is
phase coherent, we can work within the scattering ap-
proach to normal-superconducting systems [17,18]. The
starting point is the many-body state of the normal res-
ervoirs, describing injection of hole quasiparticles with
spin � �"; # at energies 0 < E < eV,

j
ini �
Y
E;�

��y
1A �E��

�y
2A �E��

�y
1B �E��

�y
2B �E�j0i; (7)

where the ground state j0i is the vacuum for quasiparticles
in the normal reservoir. The operator �"y

1A�E� creates a
spin-up hole plane wave with energy E (counted from
the superconducting chemical potential �S) in lead 1A,
going out from the normal reservoirs towards the super-
conductor, and similarly for the other operators. The �
operators obey fermionic commutation relations

To obtain the state of the quasiparticles going out from
the superconductor, j
outi, we note that the operators
creating and destroying outgoing quasiparticles are re-
lated [17,19] to the operators of the incoming quasipar-
ticles via a scattering matrix. The amplitude for a hole
injected in arm 1A, to be backreflected as an electron in
157002-3
arm 2A, is denoted reh
2A;1A and similarly for the other

amplitudes. In the tunnel limit under consideration, the
amplitude to backscatter as the same type of quasiparticle
is rhh

j�;j0�0 � 1. The Andreev reflection amplitude, reh
j�;j0�0 ,

is given by �i�=4 (independent of energy and spin).
Processes where a hole incident on barrier 1(2) is back-
scattered as an electron at barrier 2(1), i.e., when a pair in
the superconductor breaks up, are exponentially sup-
pressed with the distance between the two emission
points [6] and can be neglected in the present setup.

The tunneling limit � � 1 makes it relevant to change
the perspective from a quasiparticle picture to an all-
electron picture. An Andreev reflection, occurring with
a small probability �2, can be considered as a perturba-
tion of the ground state j�00i in the normal reservoirs (a
filled Fermi sea of electrons at energies E < �eV). It
creates an excitation consisting of a pair of electrons
(see Fig. 2). Performing a Bogoliubov transformation
[i.e., �"

j��E� � c"yj���E� and �#
j��E� � �c#yj���E�] to

electron creation operators c�y
j� �E�, the state of the quasi-

particles going out from the superconductor becomes [20]
to first order in �

j
outi � j�00i � j ~

i � j
i; (8)

where the states
j ~

i �
i�
4

Z eV

0
dE

X
j�1;2

X
��A;B

�c"yj��E�c
#y
j���E� � c#yj��E�c

"y
j���E��j�00i;

j
i �
i�
4

Z eV

�eV
dE�c"y1A�E�c

#y
1B��E� � c#y1A�E�c

"y
1B��E� � c"y2A�E�c

#y
2B��E� � c#y2A�E�c

"y
2B��E��j�00i

(9)
describe orbitally entangled electron ‘‘wave packet’’
pairs, i.e., a superposition of pairs of electrons at different
energies [21]. In first quantization, the state j
i is just the
state in Eq. (2). We emphasize that the change from a
quasiparticle to an all-electron picture, providing a clear
picture of the entanglement, does not alter the physics.

The detection of the entanglement is done via the zero-
frequency current cross correlators S�� in Eq. (6). To
obtain S��, we insert the current operator [19], ÎI���t� �
�e=h�

R
dEdE0exp�i�E � E0�t= �h�

P
�c�y

���E0�c�
���E�, into

Eq. (6) and average with respect to the state j
i in
Eqs. (8) and (9). The splitters are taken into account
by relating the c�

j� operators in arms 1A and 2A (1B
and 2B) to the c�

�� operators in the reservoirs �A and
�A (� B and �B) via the scattering matrix in Eq. (1). The
average current, equal in all arms ��, is hI��i � I �
�e2=2h��2V, independent of the splitter transparency.

The ground state j�00i in Eq. (8) does not contribute to
the correlator. Moreover, we find that j ~

i, describing two
electrons emitted into the same normal lead, only con-
tributes [14] to the cross correlator at order �4 and can be
neglected. From Eq. (6) we find S����A;�B� �
P0P����A; �B�, where P�� is given in Eq. (5), just as
announced. It is the structure of j
i in 12-space, i.e.,
j
12i, that determines the angle dependence of P��; all
properties of j
ABi just gives rise to the constant P0.
Moreover, the calculations show that the correlator
h�ÎI1��t��ÎI2��0�i vanishes as ��c=t�2 for t � �c; thus
S����A;�B� can be inserted in Eq. (4) and be used to
violate the BI, Eq. (3).

Until now, ideal conditions have been considered. One
possible source of disturbance is dephasing. In our sys-
tem, dephasing can quite generally be expressed in
terms of a density matrix ! � �j11ih11j � j22ih22j �
��j11ih22j � j22ih11j��=2, where the off-diagonal ele-
ments, giving rise to the entanglement, are suppressed
by a phenomenological dephasing parameter 0 
 � 
 1.
The correlators E��A; �B� in Eq. (4) then take the form

E � cos�2�A� cos�2�B� � � sin�2�A� sin�2�B�: (10)

By adjusting the four angles �A, �0
A, �B, and �0

B we find
that the maximal Bell parameter in Eq. (3) is

S � 2
���������������
1� �2

q
; (11)

which violates the BI for any � > 0. The optimal viola-
tion angles, all in the first quadrant, are tan�2�A� �
�� cot��S�, tan�2�0

A� � � tan��S�, and tan��B � �0
B� �

sgn�cos�2�A��f�tan
2��S� � �2�=��2tan2��S� � 1�g1=2,

where �S � �B � �0
B can be chosen at will. The
157002-3



P H Y S I C A L R E V I E W L E T T E R S week ending
10 OCTOBER 2003VOLUME 91, NUMBER 15
corresponding transmission probabilities T� � cos2����
are shown for � � 1 and � � 0:3 in Fig. 2.

The BI can thus in principle be violated for any amount
of dephasing. However, it might be difficult to produce
splitters which can reach all transmission probabili-
ties between 0 and 1. This is not a problem in the absence
of dephasing, � � 1, a violation can be obtained for a
large, order of unity, fraction of the ‘‘transmission proba-
bility space.’’ However, in the limit of strong dephasing,
� � 1, the set of probabilities for optimal violation con-
tains transmissions close to both 0 and 1; see Fig. 2.
Expecting unity transmission to be most complicated to
reach experimentally, we note that by instead choosing
TA � TB � 0, T0

B � 1=2, and T0
A � �, the inequality in

Eq. (3) becomes 2j1� �T 0
Aj 
 2. This gives a violation,

although not maximal, for all � � 1.
Apart from dephasing there are several other effects,

such as additional scattering phases, impurity scattering,
or asymmetric tunnel barriers, which might alter the
possibility to violate the BI. All these effects can be taken
into account by replacing � ! �0 cos��0� in Eq. (11), with
the important conclusion that none of these effects will
destroy the possibility to violate the BI.

The phase factor �0 is the sum of possible scattering
phases from the splitters [the amplitudes in Eq. (1) are
taken real], phases �kF	L due to a difference in length,
	L, between the normal arms (see Fig. 1), scattering
phases from weak impurities, and a possible phase dif-
ference between the superconductor at the two tunnel
contacts 1 and 2. As a consequence, e.g., the supercon-
ducting phase (in a loop geometry) can be modulated to
compensate for the other phases.

The factor �0 plays the same role as dephasing. One
possible contribution to �0 is energy dependent phases
which oscillate rapidly on a scale of eV, suppressing the
entangled part of the current correlator. For different
lengths of the normal arms, there is always a phase
�E	L= �hvF. This phase can, however, be neglected for
	L � �hvF=eV, which for eV � 	 is fulfilled for 	L
smaller than �hvF=	. Another possibility is that, due to
asymmetries of the tunnel barriers �1 � �2, the ampli-
tude for the process where the pair is emitted to j11i is
different from the process where it is emitted to j22i. This
gives rise to a state, in 12-space, ��1j11i � �2j22i�=�����������������
�2
1 � �2

2

q
�. In this case [22] �0 �2�1�2=��

2
1��2

2�. Thus,

it is in principle possible to violate BI for arbitrary
asymmetry. In contrast, we find that the constraint on a
single mode splitter cannot easily be relaxed.

In conclusion, we have investigated a spin-independent
scheme to generate and detect two-particle orbital entan-
glement in a mesoscopic normal-superconductor system.
The cross correlator between the currents in the two leads
depends in a nonlocal way on transparencies of beam
splitters in the two leads. These nonlocal correlations
157002-4
arise due to the entanglement of the injected pair. For
appropriate choices of transparencies, the correlators give
a violation of a BI for arbitrary strong dephasing.
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Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).

[20] For a related approach in optics, see Z.Y Ou et al.
(Ref. [11]).

[21] In contrast to Refs. [8], here there is no additional con-
straint on the energy spectrum of the entangled electrons.

[22] N. Gisin, Phys. Lett. A 154, 201 (1991); A. Abouraddy
et al., Phys. Rev. A 64, 050101 (2001).
157002-4


