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Double Point Contact in Quantum Hall Line Junctions
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We show that multiple point contacts on a barrier separating two laterally coupled quantum Hall
fluids induce Aharonov-Bohm (AB) oscillations in the tunneling conductance. These quantum coher-
ence effects provide new evidence for the Luttinger liquid behavior of the edge states of quantum Hall
fluids. For a two point contact, we identify coherent and incoherent regimes determined by the relative
magnitude of their separation and the temperature. We analyze both regimes in the strong and weak
tunneling amplitude limits as well as their temperature dependence. We find that the tunneling
conductance should exhibit AB oscillations in the coherent regime, both at strong and weak tunneling
amplitudes with the same period but with different functional form.
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ing center (as it surely does) a number of interesting
quantum coherence effects must take place, and it is of

ence pattern will provide a way to sort out whether the
ZBP observed by Kang et al. [8] is due to Landau level
Two-dimensional electron fluids in large magnetic
fields offer an ideal setting to study nontrivial quantum
coherence effects in strongly interacting macroscopic
systems. It is well known that the excitations supported
by the edges of quantum Hall fluids provide an ideal
window to study this new physics. Already there are a
number of very interesting experiments [1–5] which have
uncovered the nontrivial Luttinger liquid behavior of
these edge states [6,7].

Recently Kang et al. [8] used a new experimental setup
in which two quantum Hall fluids are laterally coupled
along an atomically precise barrier. In these experiments
Kang and co-workers found that for filling factors � * 1,
and for some range of filling factors, a pronounced zero-
bias conductance (ZBC) peak appears in the tunneling
conductance of the device. (The same effect reappears for
� * 2.) Two alternative mechanisms have been proposed
to explain these experiments: (i) Landau level mixing
induced by the barrier potential [8–10], and (ii) tunneling
at isolated quantum point contacts [11].

In Ref. [11], we showed that the salient features of the
experiment of Kang et al. [8] can be successfully ex-
plained by modeling the system as a pair of (coupled)
chiral Luttinger liquids (the edge states on each sides of
the barrier) in the presence of a single point contact (PC).
In particular we showed that interedge Coulomb interac-
tion yields an effective reduced Luttinger parameter
K < 1 and that for � * 1, the system crosses over to the
strong tunneling amplitude regime, leading to the appear-
ance of zero-bias peak in the tunneling conductance with
a peak value at T � 0 of Gt � Ke2=h. This crossover is
controlled by the energy scales of this system: the bias
voltage V, the crossover scale TK, and the temperature T
(and the possibility by a small spin polarization for
�� 2). We also predicted an increase in the height of
the ZBC peak for T & TK.

However, if the barrier contains more than one tunnel-
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interest to investigate quantum coherence effects of mul-
tiple impurities and their competition with thermal
fluctuations. An example of effects of this sort was con-
sidered some time ago by Chamon et al. [12], who pro-
posed a quasiparticle interference experiment based on a
two-tunneling center device in the fractional quantum
Hall regime, as a way to measure directly the fractional
statistics of Laughlin quasiparticles. However, in the frac-
tional quantum Hall regime, only the case of weak tun-
neling centers needs to be considered since in this regime
tunneling at a point contact is an irrelevant perturbation.
Instead, for � * 1, the the system is in the strong tunnel-
ing limit for T & TK, which is not accessible by pertur-
bation theory. In this regime, tunneling processes become
dominant, and an instanton expansion is required to
describe the physics. This problem is closely related to
that of scattering centers in quantum wires, first discussed
by Kane and Fisher [7,13]. Our analysis closely follows
their approach.

In this Letter, we analyze the quantum Hall line junc-
tion with two-PC’s both in the strong and weak tunneling
amplitude limits.We show that the two-PC system may be
in a coherent or in an incoherent regime depending on the
distance a separating the tunneling centers. In the coher-
ent regime the system exhibits Aharonov-Bohm (AB)
oscillations in the form of a series of resonant tunneling
processes in the strong tunneling limit. Instead, the AB
effect in the weak tunneling limit has a simple sinusoidal
form. In contrast, in the incoherent regime, the strong and
weak tunneling limits are related by duality. Naturally, a
realistic barrier must contain more than two-PC’s, which
will result in a more complex structure of AB oscillations
than what we find for just two-PC’s. Nevertheless it is also
natural to expect that as the temperature is lowered this
pattern will reveal itself step by step with the strongest
PC’s giving rise to the most prominent features of the
interference pattern. The observation of this AB interfer-
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FIG. 1. A line junction with two tunneling centers. The two
shaded regions represent two identical 2DEG, separated by an
insulating barrier mimicking the junctions used in Ref. [8].
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mixing or to PC tunneling, since the former mechanism
predicts a smooth nonperiodic dependence of the tunnel-
ing conductance on the magnetic field.

We begin by describing our model (see Fig. 1) which
has two-PC’s, one located at x � �a=2 and the other
located at x � a=2. In the notation of Ref. [11], the local
tunneling operator is

H t � t1 
y
� ���x� a=2� � t2 

y
� ���x� a=2�

� H:c:; (1)

where t1 and t2 are tunneling amplitudes, hereafter re-
ferred to as the ‘‘coupling constants.’’ The right and left
moving chiral Fermi fields  y

� can be bosonized [14]
in terms of the right and left moving chiral bosons
��, as  y

��x� / �1=
�������
2�

p
�e�i���x��ikFx. Similarly, the

normal-ordered density operators are given by J� �
��1=2��@x��. Notice that the tunneling operators at x �
� a=2 have a relative phase of 2kFa, which cannot be
‘‘gauged away’’ by shifting the bosonic field � � �� �
�� by a constant. However, the Fermi momentum is
directly connected to the position of the edge or the
effective width d of the barrier and magnetic field
through kF � d=2‘2 where ‘ �

��������������
"c=eB

p
is magnetic

length. Hence, the relative phase 2kFa is actually the
AB phase 2kFa � 2��=�0, where � is the flux in
the area enclosed by tunneling edge currents and �0 is
the flux quantum. We now follow Ref. [11] and intro-
duce the rescaled boson ’ � �=

����
K

p
, where K ��������������������������������������

�1� gc�=�1� gc�
p

is the Luttinger parameter for the
interedge interaction. In imaginary time, the total
Lagrangian density is

L �
1

8�

�
1

v
�@�’�2 � v�@x’�2

�

�
X
���

�� cos

� ����
K

p
’� � �

�

�0

�
�
�
x� �

a
2

�
: (2)

Since the tunneling perturbation acts only at the points
x � �a=2, and the free Luttinger liquid action is qua-
dratic, we can integrate out ’�x� and write an effective
action for the tunneling center degrees of free-
dom ’��a=2; ��. Let us introduce new variables X1 �
�’��a=2; �� � ’�a=2; ��
=

���
2

p
, X2 � �’��a=2; �� �

’�a=2; ��
=
���
2

p
, and to consider for now the case when

two impurities have the same strength �� � �� � �.
The effective action for X1��� and X2��� is

Seff�
1

#

X
n�0

�
j!nj

4��1�e�j!nja�
jX�1�

n j2�
j!nj

4��1�e�j!nja�
jX�2�

n j2
�

�2�
Z 1=T

0
d�cos

� ����
K
2

r
X1

�
cos

� ����
K
2

r
X2��

�

�0

�
; (3)

where!n � 2�nT are the Matsubara frequencies, X�i�
n are

the Fourier components of Xi���, and T is the temperature.
Notice that �

����
K

p
=�2

���
2

p
�X1 measures the charge trans-

ferred along the barrier and �
����
K

p
=�

���
2

p
�X2 measures the
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charge transferred to the island (the cross-hatched region
in Fig. 1).

The term e�!a in the denominator of Eq. (3) accounts
for the coherence between two-tunneling centers. As a
result, at sufficiently high temperatures Ta� 1,
exp��!nT� � 1 and in this regime quantum coherence
effects are washed away. Thus, in physical units, we can
identify two extreme regimes in which the effective ac-
tion simplifies: the coherent regime with "v=a� kBT in
which the PC’s are strongly coupled, and the incoherent
regime with "v=a� kBT, in which the PC’s act indepen-
dently. Thus, in the coherent regime, the effective action
of Eq. (3) becomes

Seff �
1

#

X
n�0

�
j!nj

8�
jX�1�

n j2 �
j!nj

8�
jX�2�

n j2
�

�
Z 1=T

0
d� VI�X1; X2� � . . . ; (4)

where VI is the effective potential

VI�X1; X2� �
1

4�a
X2���

2

� 2� cos

� ����
K
2

r
X1

�
cos

� ����
K
2

r
X2 � �

�

�0

�
:

(5)

In contrast, in the incoherent regime Seff reduces to

Seff �
1

#

X
n�0

�
j!nj

4�
jX�1�

n j2 �
j!nj

4�
jX�2�

n j2
�

� 2�
Z 1=T

0
d� cos

� ����
K
2

r
X1

�
cos

� ����
K
2

r
X2 � kFa

�
: (6)

By comparing Eqs. (4) and (6) we see that in the incoher-
ent regime the PC’s are effectively decoupled while in the
coherent regime they are strongly coupled, and X2 be-
comes massive, with a mass of order 1=a. Also note that
the strength of nonlocal interaction in the incoherent
regime is exactly twice that of the coherent regime.

(1) The coherent regime.—The potential VI�X1; X2� is
periodic in X1 with period 2�

���������
2=K

p
. The mass term

breaks this lattice translation symmetry in X2 direction.
Thus, in general there exists a single value X2 � X0

2 which
minimizes the potential along the X2 axis, unless the
resonance condition �=�0 � �half integer� is satisfied.
However, when the flux satisfies � � �n� 1

2��0, the
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potential VI�X1; X2� acquires the additional symmetry
VI�X1; X2� � V�X1 � �

���������
2=K

p
;�X2�. Thus, in this case

there are two values of X2 which minimize the potential.
This effect is analogous to the resonance phenomena first
pointed out by Kane and Fisher [13] except that in that
case the resonance was tuned by a gate voltage. The
resonance we found here is the result of the Aharanov-
Bohm effect which enables the transfer of half an elec-
tron when the flux penetrating the island is exactly
half-integer flux quantum. We will use the instanton ex-
pansion [15–17] to examine the coherent regime in the
strong tunneling limit � � 1=�aK�, and perturbation
theory in the weak tunneling limit � � 1=�aK�.

The weak tunneling limit � � 1=�aK�: Here the ef-
fective potential is dominated by the mass term which is
minimized for X2 � 0. Hence in this case X2 can be
integrated out resulting simply in a finite flux-dependent
renormalization of the tunneling amplitude: VI !
2� cos����=�0�
 cos�

���������
K=2

p
X1�. Consequently, a lowest

order perturbative calculation using the Keldysh formal-
ism [18,19] results in an expression for Gt�V � 0; T� in
the coherent weak tunneling limit:

Gt�0; T� �K
e2

h
K
2
�2K ��1=2���K�

��1=2� K�

�
T

TCWK

�
�2K�2�

�
1

2
�1� cos�2��=�0�
 � � � � ; (7)

where TCWK � ��2�=��1=�1�K� is a crossover scale and �
is a high-energy cutoff. Hence, in the weak tunneling
limit of the coherent regime, there is an Aharonov-Bohm
interference effect with the usual oscillatory form (albeit
with a reduced amplitude), as well as an offset.

The strong tunneling limit: For � � 1=�aK�, the sys-
tem can be either off resonance or on resonance.When the
system is off resonance, VI has a single minimum at X2 �

X0
2 �

���������
2=K

p
�kFa� n��, where n is an integer. In this

case, there is an energy gap of order 1=aK to the states
with other values of X2, i.e., the island-charge fluctuation
is effectively suppressed (Coulomb blockade). Thus, X2 is
frozen to a nonzero value and the problem reduces to a
single point contact system. In this regime the saturation
value of the tunneling conductance is necessarily equal to
Ke2=h. We can calculate the leading corrections to this
result using the instanton technique. In this case, the
instanton is an electron tunneling process across the
island between two disconnected pieces of the barrier.
We will denote the instanton fugacity by ) , and compute
the lowest order correction to the tunneling conductance
�Goff

t � Gt � Ke2=h due to these tunneling processes. To
the lowest order in ) we find

�Goff
t � �

�2=K

4

��1=2���1=K�
��1=2� 1=4K�

�
T

TCSO
K

�
�2=K��2

�� � � ;

(8)

where TCSO
K � ���) �

K=�1�K� is a crossover scale deter-
mined by the instanton fugacity ) and �.
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However, when the magnetic field is tuned to a reso-
nance, the projection of VI has two degenerate minima at
X2 � � �

2

������������
2g=K

p
, where g represents the renormalization

of the Luttinger parameter (or ‘‘compactification radius’’)
of X2; at the strong tunneling fixed point g0 � 1. Hence
the island effectively behaves like a two-level system
and instantons connecting degenerate minima �X1 �
m�

���������
2=K

p
; X2 � X0

2� and �X1 � �m� 1��
���������
2=K

p
; X2 �

�X0
2
 with integer m correspond to electrons hopping

on and off the island with the hopping amplitude ) 0. In
terms of these instantons, with fugacity ) 0, the partition
function is [13,15]

Z �
X
n

X0

q�1�i ��1

) 02n
Z #

0
d�2n � � �

Z �2

0
d�1 e

�
P
i<j

Vij
;

Vij � �
1

2K
�q�1�i q

�1�
j � gq�2�i q

�2�
j 
 lnj���i � �j�j:

(9)

As long as the ) 0=� � 1, we can use this partition
function to calculate semiclassically the lowest order
correction to �Gres

t � Gres
t � Ke2=h:

�Gres
t ��

1

4
��1�g�=2K ���1� g�=4K


��1=2� �1� g=4K�


�

�
T

TCSR
K

�
��1�g�=2K
�2

; (10)

with TCSR
K � ���) 0�

4K=�1�g�4K�. Comparing Eqs. (8) and
(10), we observe that the tunneling conductance on reso-
nance is further suppressed than off resonance. More
explicitly, we find that the ratio of the off and on-
resonance corrections obey the scaling law

�Gres
t

�Goff
t

/

�
1

T

�
�3�g�=2K

: (11)

Thus, the Aharonov-Bohm effect leads to an oscilla-
tory behavior of the tunneling conductance both at strong
and at weak �. In the weak tunneling limit it leads to a
small amplitude sinusoidal oscillation of Gt. At strong
tunneling, although the tunneling conductance is closer to
its maximum value Ke2=h, the deviations are more pro-
nounced and are governed by a series of resonances. In
particular, although quantum coherence involves differ-
ent mechanisms in the weak and strong tunneling limits,
the periodicity is the same in both regimes. A simple
estimate of the period is �B � 0:2 Tesla for two-PC’s
separated by a distance a � 100 ‘ (see Fig. 2).

Phase transition or crossover?: We now inquire if the
weak and strong tunneling regimes regimes are separated
by a phase transition or by a smooth crossover. The RG
flow equations for this problem [13] are

�) 0

�l
�

1

4K
��4K � 1� � g
) 0; (12a)

�K
�l

��
8

�2 )
02g: (12b)
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FIG. 2 (color online). (a) AB oscillations in the weak tunnel-
ing limit of the coherent regime; (b) AB effect in the strong
tunneling limit of the coherent regime for K < 1=4.
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FIG. 3 (color online). RG flow for (a) 1=4<K < 1=2 and
(b) K < 1=4.
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This resulting flow, shown qualitatively in Fig. 3, has a
fixed point at �g; ) 0� � �4K � 1; 0� which depends on K,
and on the initial value of g, which is g0 � 1. The
asymptotic behavior of the system depends on both the
value of K and the initial value of ) 0. Thus, for 1=4 �
K < 1=2, there is a quantum phase transition at T � 0
between a phase in which the tunneling conductance Gt
saturates to Ke2=h as T ! 0, and a phase in which Gt
vanishes as T ! 0. Instead, for K < 1=4, there is a cross-
over as the system flows to a line of strong tunneling fixed
points g! g � , ) 0 ! 0, each of which yielding a differ-
ent scaling law for Eq. (11). For T > 0, in all cases, there
will be a crossover between strong and weak tunneling
fixed points as finite temperature will eventually stop the
flow. The data of Ref. [8] suggests that Coulomb interac-
tions reduces the Luttinger parameter to a small value
K � 0:2.

(2) The incoherent regime.—In this regime,
exp��#a� ! 0, thermal fluctuations overwhelm coher-
ence effects and the two-PC’s behave as if they were
decoupled from each other. For T � � � � we find

Gt � K
e2

h
� �2=K ��1=2���1=K�

��1=K � 1=2�

�
T

TIS
K

�
�2=K�2�

� . . .

(13)

with TIS
K � ���) �

K=�1�K�. Similarly, a semiclassical calcu-
lation in the strong tunneling limit T � � leads to

Gt �
e2

h
K��2K�

2

�
�

�

�
2��1=2���K�
��K � 1=2�

�
T

TIW
K

�
�2K�2�

� . . .

(14)

with TIW
K � �����

1=�1�K�. Equations (13) and (14) show
that, in the incoherent regime, weak and strong tunneling
limits are exactly dual to each other. They also have the
same scaling behavior as the single PC case studied in
Ref. [11], which explains why the single PC picture works.

We have discussed in detail coherence effects in a two-
PC system. Naturally, a realistic barrier have a number of
such defects. A multipoint contact extension of our analy-
sis leads to a complex interference pattern due to the
existence of many competing pathways. Also, one ex-
pects a broad distribution of defects, both in tunneling
amplitudes and in relative separation. Thus, at a given
156801-4
temperature, the strongest effects will be due to the
closest defects with the largest tunneling amplitudes.
Thus, as T is lowered, coherent Aharonov-Bohm
oscillations will become increasingly more complex.
Conversely, as T is raised these effects are washed out
and the system will eventually reach the single impurity
limit. Finally, Kataoka et al. [20] studied recently an
antidot in a quantum Hall system for �� 2. We note
that this device is equivalent to the strong tunneling
coherent regime we discussed above, and that the tem-
perature dependence of the oscillations they observed is
remarkably similar to what we find for Aharonov-Bohm
oscillations near � � 1.
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