
P H Y S I C A L R E V I E W L E T T E R S week ending
10 OCTOBER 2003VOLUME 91, NUMBER 15
Dynamical Theory of Polariton Amplifiers
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We present the theory of the dynamics of the polariton amplifier in the region of small polariton
densities. We give an analytical solution for the polariton condensate density matrix and show that the
formation of a coherent quantum state is possible. Once the condensate is formed, the coherence
becomes macroscopically long living. Polariton amplifier represents, therefore, an optical memory
element, where the input weak coherent signal can be amplified and kept.
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FIG. 1. The dispersion of uncoupled photons and excitons
(dashed lines) and microcavity polaritons in the strong-
room temperature [8]. Finally, if a coherent state is coupling regime (solid lines) in a typical GaAs-based cavity.
Introduction.—Conventional lasers need an inversion
of population in the electronic system and are character-
ized by a threshold density of emission above which the
stimulated radiation dominates over absorption. The las-
ing optical mode above the threshold is described as a
nonlinear oscillator, which is resonantly excited and sta-
bilized due to nonlinearity, and the laser light is produced
in a randomly phased coherent state [1]. The formation of
a coherent state is the key feature of the laser emission, as
compared to the other monochromatic light sources.

A device usually referred to as a polariton laser [2]
consists of a semiconductor microcavity maintaining the
strong coupling regime, so that two exciton-polariton
dispersion branches exhibit avoided crossing [3]. Exciton-
polaritons excited by electric or nonresonant optical
pumping relax along the dispersion curves down to the
ground state, which is the lower polariton branch state
characterized by the in-plane momentum k � 0 (see
Fig. 1). This relaxation can be stimulated if the ground-
state population exceeds 1. Such stimulation is a conse-
quence of the bosonic nature of polaritons, as evidenced
in a number of experiments [4–6]. Bosonic stimulation of
polariton relaxation does not a priori imply the Bose-
Einstein condensation (BEC) in the final state, but it does
not exclude it either. In spite of the frequent use of terms
‘‘polariton laser,’’ ‘‘polariton amplifier,’’ and ‘‘polariton
condensation’’ in recent publications, there is still uncer-
tainty about their exact meaning. That is why we find it
important to clearly formulate what we mean by using
these terms.

In what follows we refer to the devices based on the
bosonic amplification of polariton relaxation towards the
ground state as polariton amplifiers. If such amplification
appears spontaneously and leads to a macroscopic popu-
lation of the ground state, it will be called the polariton
lasing. Because of a very small polariton effective mass,
m� � 10�4m0, the characteristic temperature T0 for po-
lariton lasing is high. For a large system area S, with
the logarithmic precision one has [7] T0 � 2� �h2n=
kBm� ln�nS�, where n is the polariton concentration, and
the polariton lasing is expected to happen up to the
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formed by the polaritons at k � 0, this will be referred
to as condensation. The formation of the polariton con-
densate reveals itself in the higher-order correlation func-
tions of the emitted light. In particular, it can be seen
from the intensity autocorrelation observed in the
Hanbury Brown and Twiss experiment [9]. This autocor-
relation function was measured recently for the polariton
laser by Deng et al. [10].

The effect of spontaneous formation of a polariton
condensate must be essentially nonlinear as only inter-
actions between polaritons (direct or indirect) may allow
them to change their statistical distribution. Thus, this
effect is excluded at low concentrations of exciton-
polaritons (further we will give the criterion for ‘‘small’’
concentration). On the other hand, if an initial seed of
coherent polaritons is introduced by a resonant optical
excitation into the ground state, it may induce forma-
tion of a polariton condensate, stimulating the relaxation
of excited polaritons to the state already characterized
by a given coherence. This is an effect of linear amplifi-
cation that may take place in any polariton amplifier and
that does not imply any polariton-polariton interaction in
the condensate. As we show in this Letter, neglecting
polariton-polariton interaction allows one to describe
this effect within a simple model of a damped quantum
2003 The American Physical Society 156403-1
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oscillator, so that time-dependent polariton statistics can
be obtained analytically.

It should be noted that the regime of low polariton
density is a peculiarity for polariton amplifiers with
respect to conventional lasers. Polariton amplifiers allow
one to work with small quantities of photons revealing
quantum characteristics of emitted light. Nonlinear ef-
fects in polariton lasers pointed out in the literature, e.g.,
the renormalization of the polariton dispersion [11,12]
and self-interaction within the quasicondensate [13], are
not important in the low-density regime we consider.

We show below that the possibility of the polariton
condensate formation has a kinetic origin, and the sur-
vival of the initial coherent seed is related to a remark-
able dynamic instability inherent to the polariton
condensate formation. This instability allows the am-
plification of the ground-state population preserving the
coherence of the condensate. Moreover, if the relaxation
speed is high enough, so that the instability is realized,
the coherence of the condensate remains macroscopically
long living in the steady-state regime, that makes po-
lariton amplifiers extremely promising for applications as
quantum memory elements. Since the possibility of BEC
in the polariton amplifier has a dynamical origin, the
theory formulated below describes the quantum kinetic
of polariton relaxation and the coherent state buildup.

Polariton amplifier dynamics.—We consider the po-
laritons as perfect bosons. The pseudospin of polaritons
(or the related light polarization) is given by the pumping
light and is conserved during the polariton relaxation on
the time scale of interest [14]. In the case of noninteract-
ing polaritons, the kinetic equation for the condensate
density matrix 	0 has the same structure as the equation
proposed by Landau [15] for the harmonic oscillator. In
the interaction representation it reads

_		 0 ��1
2�Wout�t��a

y
0a0	0 		0a

y
0a0 � 2a0	0a

y
0 �

	Win�t��a0a
y
0	0 		0a0a

y
0 � 2ay0	0a0�
: (1)

Here ay0 and a0 are the creation and annihilation operators
for polaritons in the condensate. The BEC kinetics is de-
scribed by Eq. (1) on a time scale much greater than the
typical duration of the relaxation events, which change
the occupation of the condensate by �1, and these events
are assumed to be not correlated (the Markov approxi-
mation). The coefficients Win�t� and Wout�t� define the in-
come and outcome rates for polaritons in the condensate,
as it is seen from the equation for the average number of
the condensed polaritons N0 � hay0a0i. According to
Eq. (1) one has _NN0 � Win�t��N0 	 1� �Wout�t�N0.

There are important differences between Eq. (1) and
those used for the lasing mode [1,16–18]. In the case of
polariton relaxation, the rates Win�t� and Wout�t� depend
on time through the occupation numbers Nk�t� of the
polaritons which are not in the condensate (k � 0). The
account for this time dependence makes the condensate
dynamics nonlinear and it is necessary to describe the
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above mentioned dynamic instability. On the other hand,
in contrast to the conventional laser [1], we do not allow
for the fourth power in a0 and ay0 terms, describing the
interactions within the condensate. Therefore, our theory
applies to the region of low occupation numbers N0. More
precisely, we consider the dynamics of the condensate in
the region V0N0= �h� Win;out � �0, where the typical val-
ues of the rates are given by the lifetime of a polariton in
the condensate ��1

0 , and V0 is the interaction energy of
polaritons at k � 0 [12]. We show below that it is the low
occupation regime where the coherence of the condensate
is built up, which allows one to study this phenomenon
within the framework of Eq. (1).

The relaxation of polaritons can be accompanied by
the appearance of ‘‘the order parameter’’ ��t� � ha0i,
which defines, as we see below, the coherent properties
of the condensate. To study the possibility of the order
parameter formation, we introduce a ‘‘seed’’; i.e., we look
for the solution of Eq. (1) at the initial condition 	0�0� �
j�0ih�0j. The initial coherent state of the condensate is
defined as usual [19] by the action of the unitary shift
operator D��0� � expf�0a

y
0 � ��

0a0g on the vacuum
state, j�0i � D��0�j0i.

A direct method to solve Eq. (1) is based on the intro-
duction of the ordering index for operators and then ap-
plying Feynman’s disentangling procedure [20]. The goal,
however, can be reached more easily by the observation
that if one solution, %0�t�, of Eq. (1) is known, one can
construct other solutions (for different initial conditions)
as D���%0D���y, provided that _�� � �1=2��Win �Wout��.
Therefore, the problem is reduced to finding the solution
%0 with %0�0� � j0ih0j. This particular solution can be
written as %0�t� � f�ay0a0; t�, and it follows from Eq. (1)
and the relation a0f�a

y
0a0; t� � f�ay0a0 	 1; t�a0 that

f�z; t� satisfies the differential-difference equation
_ff � Wout�t���z	 1�f�z	 1; t� � zf�z; t�


	Win�t��zf�z� 1; t� � �z	 1�f�z; t�
; (2)

which can be solved by standard methods. In particular,
the inverse Laplace transformation with respect to vari-
able z (or the generating function method of Ref. [17])
turns Eq. (2) into the equation in the first-order partial
derivatives, solvable with the method of characteristics.
The final answer is

	0 �
1

1	 c
D��� exp

�
� ln

�
1	 c
c

�
ay0a0

�
D���y; (3)

where the temporal dependencies are given by

��t� � �0eg�t�; c�t� � e2g�t�
Z t

0
Win���e�2g���d�; (4)

g�t� �
1

2

Z t

0
�Win��� �Wout���
d�: (5)

In a particular case of a 2D system of noninteracting
bosons relaxing by acoustic phonon emission, our solution
for the order parameter reduces to that derived by Bányai
and Gartner [21].
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FIG. 2. The evolution of the ground state population N0 and
the coherence parameter � at the initial stage of the condensate
formation. The pumping densities are 0.8, 8, and 160 W=cm2

for curves a, b, and c, respectively.

TABLE I. Main steady-state values obtained numerically.

Pumping density j!j
(W=cm2) N0 N0=N1 N0=N (!eV)

0.8 7:7� 103 23.5 0.04 56
8 2:7� 105 510 0.59 1.6

160 5:8� 106 5800 0.95 0.07
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The above solution can be used to calculate the second-
order correlator hay0a

y
0a0a0i, which can be measured in

the two-photon coincidence counting experiments [9,10].
It turns out that this correlator is completely defined by
the order parameter ��t�. It is convenient to introduce the
parameter

��t� �
2N2

0 � hay0a
y
0a0a0i

N2
0

�
j��t�j4

N2
0

; (6)

which provides information about the coherence of
ground-state polaritons [22], and will be referred to
shortly as the coherence degree. This parameter is equal
to 1 for the polaritons being in a coherent state, while it
goes to 0 for a thermal quantum state [19].

Before presenting the numerical results, we give a
qualitative analysis of the polariton condensate forma-
tion. First we note that without an initial seed (�0 � 0),
the ground-state polaritons always form a thermal quan-
tum state with ��t� � ��t� � 0. The kinetics of polariton
relaxation is characterized by a transient regime, during
which the polaritons come to the ground state, after being
excited in some k � 0 state at t � 0. Their relaxation
speed depends nonlinearly on the pumping intensity. For
a strong enough pumping, the stimulated scattering of
polaritons into the ground state flares up at a time ts > 0,
so that the income rate increases drastically and becomes
much greater than the outcome rate. In the time domain
where Win�t� > Wout�t�, the � � 0 solution becomes un-
stable. In the case of a small seed �0 � 0 introduced
initially, this instability allows the condensation to hap-
pen. The initial order parameter survives and is amplified,
so that in the steady-state regime one has a large �, large
occupation N0 � c	 j�j2, and a finite coherence pa-
rameter �.

After the steady-state regime is reached, the � � 0
point becomes stable again, since the rates achieve the
time independent values Wst

in and Wst
out with Wst

in <Wst
out.

However, the difference of the stationary rates is very
small, inversely proportional to the system area S, which
corresponds to a large ground-state population Nst

0 �
Wst

in=�W
st
out �Wst

in� / S. If the coherence is formed, its
decrease is extremely slow in large cavities.

Numerical results.—The coefficientsWin�t� andWout�t�
for our system are given by [23]

Win�t� �
X
k�0

wk!0Nk�t�; (7)

Wout�t� � �0 	
X
k�0

w0!k�Nk�t� 	 1
: (8)

Here wk0!k describes the rate of polariton transitions
between the k0 and k states. Details of the calculation
of these scattering rates are given in Ref. [24]. The po-
lariton populations Nk�t� are found from the semiclassi-
cal kinetic equation [23,24].

We consider a GaAs-based microcavity containing a
single quantum well. The parameters are the same as in
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Ref. [23]. We assume that this structure contains an equi-
librium free electron gas of density 1010 cm�2, which
speeds up the relaxation processes [23]. The cavity has a
finite lateral radius R � 100 !m. We model the following
experiment: at t � 0 an ultrashort laser pulse generates a
coherent ground state containing a variable polariton
number (seed). At the same time, an incoherent non-
resonant cw pumping is turned on. Three pumping den-
sities (0.8, 8, and 160 W=cm2) are considered. In all
cases the strong coupling regime is maintained. Figure 2
shows the evolution of the ground-state population for
different pumping densities and a seed of 100. Table I
reports the parameters obtained in the steady-state re-
gime (achieved about 1 ns after the pumping start): the
ground-state population, the ratio of populations of the
ground state and the first excited state (with the wave
vector k � �=R), the ratio of the ground-state population
and the total population, and the chemical potential ! �
kBT ln�1� 1=N0�. The temperature T of the polariton
subsystem in the steady state becomes very close to the
lattice temperature.

It is seen from Fig. 2 that at low pumping density, the
seed disappears on a time scale of a few tens of pico-
seconds. In the intermediate and high pumping densities,
the coherence survives, and the buildup of the order
parameter accompanies the amplification of the initial
156403-3
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FIG. 3. The ground state coherence degree versus the seed
population in the steady-state regime. Nonresonant pumping
densities are 8 W=cm2 (dashed line) and 160 W=cm2 (solid
line).
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seed coherent state. This is to our knowledge the first
theoretical description of a polariton coherence buildup
in a realistic semiconductor microcavity, i.e., including
real polariton dispersions and all the major interactions.
This coherence buildup is a clear signature of polariton
condensation.

In the intermediate pumping densities, the values of the
steady-state coherence degree depend noticeably on the
seed characteristics. The dependencies of the coherence
degree � on the seed population are shown in Fig. 3 for
two pumping densities. One can see that the buildup of
coherence takes place only if the seed population exceeds
some critical value which depends on pumping, but re-
mains always very small (from 10 to 100 polaritons as
compared to N0 � 106 in the steady state).

The polariton condensate is formed and is stabilized
at a very early stage of the relaxation processes, where
the occupation of the ground state is still small. This
allows us to neglect the interaction of polaritons in the
condensate to study the coherence evolution. Clearly, at
high pumping densities the ground state occupation be-
comes high, and the interaction of polaritons cannot be
omitted. The effect of interaction, however, does not
change qualitatively the above picture. The dynamics of
the condensate formation will still be characterized by a
short, transient time domain, where the coherence is built
up (and this domain is adequately described by the above
theory), and a macroscopically long time domain, where
this coherence and the order parameter relax. The repul-
sive polariton-polariton interaction will be responsible
for the formation of the superfluid phase through the
Kosterlitz-Thouless transition. And, if the temperature
is less than the transition temperature, the relaxation of
the order parameter will remain very slow for large
cavities.

In conclusion, we have presented a quantum kinetic
theory describing the dynamical aspects of the polariton
156403-4
amplifier in a nonresonantly pumped cavity. A fast re-
laxation kinetics of the polaritons allows the formation of
a coherent quantum state. The coherence is then main-
tained over macroscopically long time in the steady-state
regime.
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