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Fractal Weyl Laws for Chaotic Open Systems
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We present a conjecture relating the density of quantum resonances for an open chaotic system to the
fractal dimension of the associated classical repeller. Mathematical arguments justifying this con-
jecture are discussed. Numerical evidence based on computation of resonances of systems of n disks on
a plane are presented supporting this conjecture. The result generalizes the Weyl law for the density of
states of a closed system to chaotic open systems.
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either positive or negative times. The Hausdorff dimen-
sion of the repeller is given by DH 	 2dH 
 2, where we

tum correspondence. To formulate it in terms of the
semiclassical zeta function we consider a semiclassical
The celebrated Weyl law concerning the density of
eigenvalues of bound states is a central result in the
spectroscopy of quantum systems [1]. The Weyl formula
states that the asymptotic level number N�k�, defined
as the number of levels with kn < k (where k ! 1),
is given after smoothing by N�k� � fkn:kn � kg 	
VkD=�D=2�!�4��D=2 
 � � � for a quantum system bounded
in a region R of D-dimensional space whose volume is V.
For closed systems with smooth boundaries, the Weyl
formula is well established, and although primarily valid
in the semiclassical limit, nevertheless can be applied
with astonishing accuracy to very low energies for inte-
grable and chaotic closed systems. Generalizations of the
Weyl law to other situations have long been sought. A
notable example is the conjecture by Berry [2] for the
density of states of closed systems with fractal bounda-
ries, i.e.,‘‘fractal drums.’’

Open systems are characterized by resonances defined
by complex wave vector ~kkn 	 Re~kkn 
 iIm~kkn, correspond-
ing to states with finite lifetimes arising from escape to
infinity. Open chaotic systems, which occur in a variety of
physical situations, are generically characterized by a
classical phase space repeller that is fractal. In this
Letter we present a conjecture relating the density of
resonances for an open chaotic system to the fractal
dimension of the associated classical repeller. It can be
stated as

N�k� � f~kkn:Im~kkn > �C;Re~kkn � kg  k1
dH ; (1)

where dH is the partial Hausdorff dimension of the re-
peller [3]. This relation generalizes the Weyl law for the
density of states of a closed system to chaotic open
systems.

In this Letter, we will provide a heuristic argument for
the validity of this conjecture and present new computa-
tions that confirm its validity.

The repeller in a scattering problem is defined as the set
of points in phase space which do not escape to infinity at
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did not restrict ourselves to an energy surface. For closed
two-dimensional systems, we have real zeros only and
N�k� 	 fkn:kn � kg  k2, which is consistent with (1) as
dH 	 1. Then everything is trapped.

Our motivation comes from rigorous work on quantum
resonances and, in particular, from the work of Sjöstrand
[4] on geometric upper bounds on their density. The
optimal nature of that bound was recently indicated by
a numerical experiment [5] involving a computation of
quantum resonances for semiclassical Schrödinger opera-
tors with chaotic classical dynamics.

Here we consider a different but related problem.
Suppose that Z�k� is the semiclassical Selberg-Ruelle
zeta function, with k the wave number. In some situations
the zeros of its meromorphic continuation approximate
semiclassically the quantum resonances of the quantized
system—see [6,7] for a review of recent theoretical and
experimental results. Because of the exact Selberg trace
formula, this is rigorously known for surfaces of constant
negative curvature [8]. Recently that case was studied
both theoretically and numerically [9]. It was shown
that a better bound is possible in a small energy interval:
f~kkn:Im~kkn > �C; k � Re~kkn � k
 1g  kdH . Bounds such
as these normally follow from (1) with a good error
estimate. Numerical results for Selberg zeta functions
also indicate that the upper bounds are sharp.

Here we show that (1) holds for zeta functions associ-
ated with configurations of hard disks in the plane. The
result is demonstrated by numerical computations of
resonances of n disks on a plane obtained from the poles
of a semiclassical Ruelle zeta function calculated using a
cycle expansion. We have chosen the n-disk geometry
because it is hyperbolic, has been treated extensively
with well-developed theoretical machinery in the
form of cycle expansions, and has computable fractal
dimensions.

The trace formula of Selberg, Gutzwiller, and Balian-
Bloch (see, for instance, [10]) provides one of the most
elegant and useful ways of expressing the classical quan-
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quantization ĤH of a classical Hamiltonian H: for in-
stance, H 	 p2 
 V�q� and ĤH 	 � �h2
 V�x�.

The contribution of periodic orbits (PO) to the trace of
the resolvent is given by

t r
1

E� ĤH
jPO 	 �lnZ�0�E��1
 �ha1�E� 
 �h2a2�E� 
 � � ��;

(2)

where Z�E� is the semiclassical zeta function given by

Z�E� 	 exp

�
�
X
p

X1
n	1

1

n
ei�p;n
inSp�E�= �h

jI � Jnpj1=2

�
: (3)

Here p’s are primitive periodic orbits, �p;n’s the Maslov
indices at n iterations, Sp’s classical actions, and Jp’s the
linear Poincaré maps. The formula (3) is somewhat formal
but can be made rigorous—see [11] for a recent presenta-
tion in a generalized setting. We also note that, suitably
modified, an exact formula for a class of constant curva-
ture open chaotic systems is given in [8].

For open systems, the quantum resonances are defined
as the poles of the meromorphic continuation of the
resolvent (or Green’s function) �E� ĤH��1. Neglecting
higher order terms in (2) suggests that in the semiclassical
limit the resonances should be approximated by the com-
plex zeros of the analytic continuation of Z�E� [7].

Since a resonance corresponding to E 	 E0 � i� prop-
agates as exp��itE= �h� 	 exp��itE0= �h� t�= �h� (hence
E0 is interpreted as the rest energy, and � as the rate of
decay), the ‘‘visible’’ resonances should satisfy �<C �h: if
� � �h the state decays too fast to be seen. As a density of
resonance states near a given energy level, E0, it is thus
natural to consider N �h�E0; �� 	 fE� i�:jE� E0j<
�;�<C �hg. From [4,5] we expect that for hyperbolic
classical flows

N �h�E0; ���h�d�E0;��;

d�E0; �� 	
1

2
dimf�q; p�:jH�q; p� � E0j< �;�t�q; p�

=! 1; t ! �1g: (4)

The set appearing in the definition of d�E0; �� is the
trapped set or the repeller of the classical flow. It is not
clear at this point what notion of the dimension should be
used. The upper bounds [4] and numerical results in [5]
are given in terms of the Minkowski dimension.

To indicate the reasons behind (4) we first recall the
standard argument for obtaining the Weyl law. If ĤH is a
quantum Hamiltonian with a discrete spectrum near E0

[which classically corresponds to the fact that H�1��E0 �
�; E0 
 ��� is compact], we have a semiclassical trace
formula [12], trf�ĤH� ’ h�D

RR
f�H�p; q��dpdq. Choosing

f close to a characteristic function of an interval, we
obtain the Weyl law. When the set of closed orbits has
measure zero we have a more precise result at noncritical
energies E0: trf��ĤH � E0�= �h� ’ h�D

RR
f��H�p; q� �

E0�= �h�dpdq.
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Heuristically, the Weyl law for the number of quantum
states of a confining Hamiltonian between energies a and
b is obtained by counting the number of independent
quantum states covering the corresponding part of phase
space. By the uncertainty principle, a maximally local-
ized state lives in a box with sides

���
h

p
(in phase space),

and the number of such boxes needed to cover the region
a � H � b is proportional to the volume of the region
times h�n where n is the number of the degrees of free-
dom. Using max-min arguments this can easily be made
rigorous.

For an open system the volume of the region a � H �
b is infinite but the density of quantum resonances should
be related to the trapped set only, that is to the set of
points which are not carried to infinity by the classical
flow in negative and positive directions. If that set is very
regular in the sense of self-similarity, then the number of
maximally localized states needed to cover it is propor-
tional to h�m=2 where m is the dimension of the trapped
set for energies between a and b. Normally we do not
expect the trapped set to be uniformly regular, especially
when we vary the energy, but a reasonable regularity can
be expected from its intersection with a Poincaré section
at a given energy. Then the covering argument can be
applied on the Poincaré section, and since the states are
invariant under the flow, we obtain the missing dimen-
sion. That gives the infinitesimal density at a given energy
in terms of the dimension of the trapped set at that energy.

For more quantitative variations of this argument
(which cannot be made fully rigorous due to the non-
self-adjointness of the problem; only upper bounds can be
obtained following the work of Sjöstrand) see [5]. Here
we will present an argument based on the trace formula.

For open systems the space in which the trace is
taken needs to be modified. One way to do it is by
conjugating ĤH with exp�ĜG= �h� where ĜG is a quantization
of a Lyapunov function, �d=dt�G ��t�q; p� ’ #�q; p�2,
#�q; p� 	 distance to the trapped set [4]. For a suitable
global choice of G, the resonances are the eigenvalues
of the non-self-adjoint operator ĤHG 	 e�ĜG= �hĤHeĜG= �h,
and for f’s of the form exp��az2 � ibz�, a; b > 0,
we still have a relation between the resonances
and trf�ĤHG�. We note that the standard ‘‘Heisenberg
picture’’ argument and the property of G show that
ĤHG is a quantization of H�q; p� � i#�q; p�2. Insert-
ing this, somewhat formally, to the trace formula above
we obtain trf��ĤHG � E0�= �h� h�D
1

RR
H�1�E0�

exp��
#�q; p�2= �h�dqdp h�D
1h�2D�1�dimKE0

�=2, where KE0
is

the trapped set in H�1�E0�, dimKE0
’ 2d�E0; �� � 1. This

gives the relation (4) with � 	 h which is stronger than
having it for a fixed �. We stress that this argument can be
made rigorous as far as the upper bound is concerned.

In view of the semiclassical connection between the
zeros of Z�E� and the resonances seen through (3), it is
natural to consider the analog of (4) for those zeros. It is
straightforward but a bit cumbersome (in view of bounda-
ries) to rewrite the above argument in this case.
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FIG. 1. A2 resonances of the 3-disk system with r 	 6
and a 	 1.
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FIG. 2. (a) The counting function, N�k�, for width C 	 0:28
for the resonances in Fig. 1. (b) The plot of lnN�k� against lnk.
The least square approximation slope is equal to 1.288. (c)
Dependence of density of resonances N=C on strip width C.
The vertical line is 1

2,0.
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In the case of hard disk scattering in two dimensions
(see [7] and references given there) the quantum
Hamiltonian is given by � �h2D where D is the
Dirichlet Laplacian. It is then natural to introduce a
new variable k, k2 	 E= �h2. Semiclassical asymptotics
correspond to the limit k ! 1, and the semiclassical
density of resonances considered above should be
replaced by N�k� 	 f~kkn:Im~kkn > �C;Re~kkn � kg. The
Hausdorff dimension DH of the repeller in (4) is now
independent of the energy level.

For the hard disk geometry, the zeta function can be
considered as a function of k and it takes a somewhat
simpler form

Z�k� 	
Y1
j	0

Y
p

�1� ��1�mpeikTp��j�1=2
p �j
1; (5)

where Tp is the period, �p > 1 is the larger of the two
eigenvalues of Jp, and mp is the number of reflections of
p. Here we set particle velocity ( 	 1 for simplicity.

Effective ways of evaluating the analytic continuations
of semiclassical (and dynamical) zeta functions have
been developed by several authors. The cycle expansion
method [13] has proved itself to be particularly success-
ful. We used it in earlier computations performed for the
purpose of comparisons with experimental data [14]. As a
limit case, one first considers the 2-disk system. In the PO
theory, quantum resonances form a rectangular lattice in
the complex k plane. Thus N�k�  k. This is consistent
with dH 	 0 since this system is not chaotic.

We also chose configurations for which the dimensions
of the repellers were readily available [3]: three symmet-
rically spaced disks of radii a 	 1, with centers r 	 6
apart. The zeta function (5) with smaller j will give
sharper quantum resonances. For example, for the sym-
metric 3-disk system with r 	 6, the quantum resonances
for the zeta function (5) with j 	 0 are located in the area
Im~kk <�0:121, while the quantum resonances for the j 	
1 zeta function are located in the area Im~kk <�0:699. We
will only consider the zeta function with j 	 0. The C3v
symmetry of the 3-disk system helps further factorize the
zeta function and makes the periodic orbit theory work
more efficiently [13]. There are three irreducible repre-
sentations, A1, A2, andE. The cycle expansion with PO up
to period 6 gives a very accurate calculation of the quan-
tum resonances of the A1 and A2 representations for the
range Im~kk > �0:3 and 0< Re~kk < 2000. For the reso-
nances outside this range, more PO would be needed in
the cycle expansion. For example, including all POs up to
periods 4, 5, and 6, one will get, respectively, 26, 33, and
39 resonances in the area 2000< Re~kk < 2010 and
�0:5< Im~kk <�0:1. The quantum resonances of A1

and A2 representations are distributed on lines. The E
resonances appear to be two dimensional, but a careful
inspection reveals that they are also distributed on lines.
All these lines tend to move closer to the line Im~kk 	
� 1

2,0 as Re~kk increases, where ,0 is the classical escape
154101-3
rate. This leads to the increase of the density of reso-
nances [13].

The principle (4) applied to the density N�k� defined
before suggests the law

lnN�k�= lnk ’ DH=2 	 1
 dH; k ! 1: (6)

Representative numerical results are shown in Fig. 1 for
a 3-disk configuration with r 	 6 and a 	 1. Figure 2(a)
shows the number of resonances N�k� vs k in a strip of
width C 	 0:28. Clearly the dependence of N�k� on k is
superlinear. This is confirmed by the logarithmic plot in
Fig. 2(b) which also yields an exponent of 1.288, close to
the calculated value of 1
 dH 	 1:2895 [3]. Figure 2(c)
shows that the density of resonances N=C peaks at
C ’ 1

2,0, and then decays rapidly for large C. This dem-
onstrates that the range of C used in the present study is
more than adequate.
154101-3
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FIG. 3. Dependence of exponent on the rescaled strip width,
2C=,0, for the 3-disk system in three cases with r=a 	 5, 6,
and 10. ,0 	 0:4703, 0.4103, and 0.2802 is the corresponding
classical escape rate. The solid lines are the corresponding
Hausdorff dimensions dH 	 0:3189, 0.2895, and 0.2330. The
values of ,0 and dH are calculated following Ref. [3] and
references therein.
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To be valid the result of this paper requires that the
exponent of k should be independent of the counting strip
C. The numerical calculations indeed confirm this as
shown in Fig. 3, where only weak dependence of the
exponent on the choice of C is observed as C is increased.

Similar calculations of the quantum resonances with
different separation r=a 	 5, 8, 10, and 12 were also
carried out for the 3-disk system. They all confirm the
validity of (6) for the symmetric 3-disk configurations.
We also see that the agreement with the dimension per-
sists when we change the disk separation (Fig. 3). To
combine data for different r=a values in a single plot,
we rescaled the strip width by 1

2,0, the value around
which the density of resonances is a maximum as shown
in Fig. 2(c).

The computational results presented here produce
strong evidence for the connection between the density
of resonant states and the fractal dimension of the repeller
on which they concentrate. It is quite possible that differ-
ent dimensions might occur in lower and upper bounds
once less symmetric examples are considered. Since zeta
functions were used in the computation, we have also
provided evidence that the density of zeros of zeta func-
tions is related to the dimension of the repeller.

It is worth noting that while fractality arises from R or
its boundary @R in the works of Ref. [2], in the present
work both R and @R are smooth and instead the classical
phase space is fractal.

The connections described here between quantum
spectral properties and classical fractal properties of the
associated repeller of open chaotic systems parallel a
similar connection established earlier between the quan-
tum spectral autocorrelation and the classical decay rate
154101-4
[7,14]. The spectral autocorrelation of the quantum mi-
crowave spectra of n-disk billiards was shown to display
the fingerprints of the classical Ruelle-Pollicott (RP)
resonances ~,,n 	 ,n � i,0

n. The leading RP resonance
,0 (,0

0 	 0) represents the classical decay rate and is
related to the information dimension dI of the repeller
by ,0 	 .�1� dI�, where . is the average Lyapunov
exponent. The higher RP resonances ~,,n with n > 0 rep-
resent fine structure properties of the fractal repeller
comprised of the manifold of trapped orbits.

In conclusion, the present work establishes a funda-
mental connection between a quantum spectral property
and the fractal phase space structure of the corresponding
classical dynamics. The result has important implications
for a variety of areas where it is important to know the
number of degrees of freedom of quantum chaotic sys-
tems, and since open quantum chaotic systems are rele-
vant to a wide range of problems in atomic and chemical
systems [6,10,15] and quantum computation.
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