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Composite Band-Gap Solitons in Nonlinear Optically Induced Lattices
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We introduce novel optical solitons that consist of a periodic and a spatially localized component
coupled nonlinearly via cross-phase modulation. The spatially localized optical field can be treated as a
gap soliton supported by the optically induced nonlinear grating. We find different types of these band-
gap composite solitons and demonstrate their dynamical stability.
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modulation (XPM) effect, facilitates the formation of a
novel type of a composite optical soliton, where one of the

stationary form of Eq. (1) once, we introduce the effective
potential P�u1�� �	=2���1�k1�u2� ln�1�u2�	, so that
Recent theoretical and experimental results demon-
strated nonlinear localization of light in optically in-
duced refractive-index gratings [1,2]. Such localized
states can be treated as ‘‘discrete’’ and ‘‘gap’’ solitons
observed in fabricated periodic photonic structures [3],
but supported by gratings induced by a complementary
optical field. Optically induced lattices open up an excit-
ing possibility for creating dynamically reconfigurable
photonic structures in bulk nonlinear media. The physics
of coherent light propagating in periodic gratings can be
linked to the phenomena exhibited by coherent matter
waves (Bose-Einstein condensates) in optical lattices [4].

Among the most challenging problems in the physics
of induced gratings is the creation of stable, uniform
periodic optical patterns which can effectively modulate
the refractive index of a nonlinear medium. Periodic
modulation of the refractive index can be induced, for
instance, by an interference pattern illuminating a photo-
refractive crystal with a strong electro-optic anisotropy
[1]. Interfering plane waves modulate the space-charge
field in the crystal, which relates to the refractive index
via electro-optic coefficients. The latter are substantially
different for the two orthogonal polarizations. As a re-
sult, the material nonlinearity experienced by waves po-
larized in the direction of the c axis of the crystal is up to
2 orders of magnitude larger than that experienced by the
orthogonally polarized ones. When the lattice-forming
waves are polarized orthogonally to the c axis, the non-
linear self-action as well as any cross action from the
copropagating probe beam can be neglected. The periodic
interference pattern propagates in the diffraction-free
linear regime, thus creating a stationary refractive-index
grating [2].

In this Letter we develop the concept of optically
induced gratings beyond the limit of weak material non-
linearity and propose the idea of robust nonlinearity-
assisted optical lattices, created by nonlinear periodic
waves. Strong incoherent interaction of such a grating
with a probe beam, through the nonlinear cross-phase-
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components creates a periodic photonic structure, while
the other component experiences Bragg reflection from
this structure and can form gap solitons localized in the
transmission gaps of the linear spectrum. The observation
of nonlinear light localization in this type of optically
induced gratings can be achieved in photorefractive me-
dium with two incoherently interacting beams of the
same polarization. Effectively incoherent interaction of
these beams can be achieved by exploiting the slow non-
linear response of a photorefractive crystal [5]. We study
such a configuration in a saturable medium and demon-
strate the existence and stable dynamics of the novel
band-gap lattice solitons.

The propagation of two incoherently interacting beams
in a photorefractive crystal can be approximately de-
scribed by the coupled nonlinear Schrödinger (NLS)
equations for the slowly varying envelopes En (n � 1; 2),

i
@En

@z
�

@2En

@x2
� 	N�I�En � 0; (1)

where N�I� � I=�1� sI� describes saturable nonlinear-
ity, I �

P
jEnj

2 is the total light intensity, s is the satu-
ration parameter, and 	 � �1 stands for the focusing or
defocusing nonlinearity, respectively. Stationary solu-
tions are found in the form En � un�x� exp�i	knz�, where
kn are the propagation constants of the components. We
assume strong saturation regime, s � 1, which is closer to
realistic experimental conditions.

The induced waveguiding regime, well studied in the
context of vector solitons [3], corresponds to the case
when the intensities of the two interacting fields are sig-
nificantly different. Then the strong field (e.g., u1) is de-
scribed by a single (scalar) NLS equation, and the weaker
field propagates in the effective linear waveguide induced
by the stronger component via XPM. Here we assume that
the effective waveguide (i.e., the grating) is created by a
periodic nonlinear field u1�x� with the propagation con-
stant k1, described by the stationary wave-train solutions
of a scalar Eq. (1) (see also Ref. [6]). Integrating the
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the general stationary solution u1�x� with the amplitude
A can be found by solving the equation P�A� �
1
2 �du1=dx�

2 � P�u1�. Figure 1(a) shows the form of the
potential P�u1� in both the focusing (	 � �1, top) and
the defocusing (	 � �1, bottom) cases. The minima of
P�u1� correspond to a plane wave with the constant am-
plitude A2

cw � k1=�1� k1�, whereas the bright soliton
solutions correspond to the separatrix at A � As with
P�As� � 0.

In the limit s ! 0, exact analytical expressions for the
nonlinear periodic waves u1�x� can be written down for
	 � �1, in terms of the elliptic Jacobi functions,
cn�x;��, dn�x;��, and sn�x;��, with the modulus 0 �
��k1� � 1. They represent self-consistent solutions of
the cubic NLS equations which coincide with the well-
studied Hill equation with associated Lamé potentials
[7]. It can be shown that the general structure of the
periodic solutions is preserved for s � 0. For 	 � �1,
there exist two branches of the periodic (cnoidal) solu-
tions shown through their induced refractive-index
modulation in Fig. 1(d) for A � A1, Acw < A1 < As, and
in Fig. 1(e) for A � A2 > As. The cn-type solutions of
the branch A2 have nodes, whereas the dn-type solutions
of the branch A1 are nodeless. In the defocusing case
(	 � �1), there exists only one branch of the sn-type
periodic solutions for A � A0 < Acw; see Fig. 1(c). In a
strongly nonlinear limit the large-period A1;2 and A0

solutions describe periodic trains of bright and dark
solitons, respectively.

Having identified the stationary structure of nonlinear
periodic waves u1�x�, we find that, in the induced wave-
guiding regime, the weak probe u2 is scattered by an
effectively fixed linear grating characterized by the po-
tential N�I�, where I � u21�x�. The guiding properties of
such a linear grating are determined by the band-gap
structure of the spectrum of the Hill equation:
d2u2=dx2 � �	N�I�u2 � k2u2, where the eigenvalue
k2�A� depends on the grating amplitude. The eigen-
FIG. 1. (a) Effective potential P�u1� for the focusing (top)
and defocusing (bottom) cases (k1 � 0:5). Period (b) and
examples (c)–(e) of the refractive-index modulation N�I� for
the three branches of periodic solutions of the NLS equation:
(c) A0 � 0:8, (d) A1 � 1:41, and (e) A2 � 2:01.
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functions satisfy the Bloch condition u2�x� �
exp�iKL�u2�x� L�, where L is the period and K is the
momentum of the lattice. The spectrum consists of M
bands and a continuum band, with the total m � 2M� 1
band edges. The eigenfunction at the mth band edge
corresponds to a strictly periodic Bloch wave um2 �
bm�x� � �bm�x� L�, for which KL � 0; �. Figure 2
shows an example of the band-gap spectrum �k2 gener-
ated by the scalar cnoidal wave u1�x�, for k1 � 0:5. The
Bloch waves at the band edges m � 1; 2; 3; 4; 5; . . . have
the propagation constants �	km2 � �	km�1

2 and the pe-
riods L; 2L; 2L; L; L; . . . . The Bloch wave bm�x� at the
band edge km2 � k1 coincides with the scalar cnoidal
wave u1�x�. In the case of a saturable nonlinearity some
predictions of the number and position of the bands and
gaps can be made using the theory of Lamé-type equa-
tions [8]. For example, in the case of a defocusing non-
linearity, the grating potential can be well approximated
by N�x� 
 a�a� 1��sn2�x;��, where a � 1. Since the
spectrum of the Lamé equation has M � a bound bands,
it is expected that the A0-type grating generates a single
bound band followed by a semi-infinite band (as seen in
Fig. 2 for A < Acw).

In the limit A ! As the period of the cnoidal-wave
solution diverges and the spectrum bands disappear. On
the other hand, when the grating amplitude A approaches
the plane-wave amplitude Acw in the focusing case, the
periodic modulation of the refractive index vanishes and
the gaps disappear; see Fig. 2.

To be useful for creation of robust dynamical photonic
structures, nonlinear periodic waves should be stable.
Previous studies of stability of periodic solutions
[6,9,10] suggest that the solutions of the A1-type are
strongly unstable due to modulational instability (MI),
whereas MI is suppressed for the A2-type solutions in a
saturable medium, and also for A0-type solutions in the
defocusing case. Our numerical studies have confirmed
that the A0-type grating in the defocusing case is both
linearly and dynamically stable, and also demonstrated
FIG. 2. The band-gap structure of the linear spectrum
�k2�A�, induced by the nonlinear periodic grating u1�x� for
k1 � 0:5. The bands are shaded. Marked dots indicate the
propagation constants for gap solitons shown in Fig. 3.
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FIG. 3. Examples of the stationary two-component solutions
in the different band gaps for fixed parameters of the periodical
component k1 � 0:5 for the defocusing medium (upper row)
and the focusing medium (two lower rows). The dashed lines
are the periodic component u1; the solid lines are the localized
component u2. Gap solitons correspond to the marked points
in Fig. 4.

FIG. 4. Power of the localized component Q�
R
u22�x�dx vs k2

for k1 � 0:5 and defocusing (A0 � 0:8) (top) and focusing
(A2 � 2:01) (bottom) nonlinearity. Shaded regions correspond
to the spectral bands, and the solid circles mark the solutions
shown in Fig. 3.
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that the A2-type solutions are only weakly (oscillatory)
unstable. In contrast, the A1-type lattice is quickly de-
stroyed by strong symmetry-breaking instabilities; there-
fore, we excluded it from our further consideration.

The localization of the probe field u2 in the gaps of
the linear spectrum of the periodic structure induced by
the field u1�x� can occur in the nonlinear regime of the
probe propagation. In this regime, the significant intensity
of the probe beam causes its nonlinear self-action. When
the backaction of the probe on the grating through XPM
is ignored (e.g., in the case of a weak material non-
linearity for the grating wave), the physics of the local-
ization is similar to the standard case of nonlinear waves
in fixed periodic potentials, well studied in the context of
both optical and matter waves [4,9,11,12]. However, in
our problem the grating and scattered wave are strongly
nonlinearly coupled and, therefore, as in the case of two-
component vector solitons [3], we should expect the ex-
istence of self-consistent hybrid structures formed by a
periodic wave and a localized gap mode.

Indeed, by solving two-component Eq. (1) numerically,
with a value of k1 fixed to that of the scalar grating
k1 � kg1 , we have found different families of solutions,
consisting of the oscillatory (u1) and localized (u2) mu-
tually trapped constituents. The propagation constant of
the localized component always lies within the gaps of
the linear spectrum. Therefore this component can be
described as a gap soliton with even or odd symmetry
[12], centered at a maximum or minimum of the grating
potential, respectively. Figure 3 shows some examples of
such a gap soliton for both defocusing and focusing cases.
In Fig. 4 we show different families of the localized
modes. First, we note that the powers of discrete solitons
with different symmetries coincide, i.e., these solitons
belong to the same family. This indicates the absence of
the Peierls-Nabarro potential barrier and good mobility
of the localized states. Second, due to the nonlinear XPM
interaction, the induced grating is strongly modified by
the localized component, but recovers periodicity in the
far field.

In agreement with the theory of gap solitons [12], the
families of localized states originate at the edges of the
bands with the numbers m � 2 (for 	< 0) or m �
1; 3; 5; . . . (for 	 > 0), where the effective dispersion,
�@2k2=@K

2�jkm2 , is correspondingly negative or positive.
At the respective band edge, the low-power gap soliton
is weakly localized, and can be described as a slowly
varying envelope of the corresponding Bloch wave bm�x�
[11]. In the defocusing case, only gap solitons [(a) and (b)
in Figs. 2–4] can exist in the induced grating, whereas
in the focusing case, both gap [(c) and (d)] solitons and
self-trapped [(e) and (f)] solitons in the semi-infinite
gap are possible. Near the opposite gap edges, where
the gap modes have high powers, the periodic grating
wave acquires significant defects induced by the localized
state; however, both components still form a vector sta-
tionary state.
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To understand the nature of this composite state, we
consider the correction to the linear grating spectrum due
to the low-amplitude gap mode u2, which is bifurcating
off the lower edge of band II (m�3) in the focusing case,
or upper edge of band I (m � 2) in the defocusing case.
Near the bifurcation threshold, the nonlinear XPM cou-
pling leads to the effective shift of the propagation con-
stant of the periodic grating component: k1�kg1��k1,
153902-3



FIG. 5. Stable propagation of the gap soliton in the defocus-
ing grating. (a) Propagation dynamics of the initial (odd) state,
corresponding to the family (a) and (b) in Fig. 4, perturbed by
a random amplitude noise, in the absence of the grating; (b) the
gap mode (solid line) and grating (dashed line) initial profiles;
(c) propagation dynamics in the presence of the grating; (d) the
final state at z � 400.
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where kg1 is the fixed propagation constant for the scalar
grating ug1�x�, and �k1 � 	

R
u22u

2
1�1� u21�

�2dx. As a
result, the band edges km2 corresponding to the periodic
Bloch modes bm�x� � ug1�x� shift into the gap. This means
that the nonlinear mode u1, coupled to the field u2 and
corresponding to the fixed propagation constant k1 � kg1
(i.e., fixed power), now lies within the band, and has an
oscillatory, but not strictly periodic, nature. Therefore,
the localized low-power gap mode u2 is nonlinearly
coupled to an in-band defect mode in the u1 component,
which is localized on the Bloch-wave background.
Together, the two components form a novel band-gap
composite soliton. In the deeply nonlinear regime, when
the high-intensity gap mode induces a large defect in the
grating wave, both components exist as a vector soliton in
a periodic waveguide N�I�, which depends on both field
intensities, I � u21 � u22. As k2 ! k1, the gap mode’s am-
plitude approaches that of the grating, and both compo-
nents of the band-gap soliton become oscillatory.

The crucial issue of stability of the gap solitons in the
nonlinear induced gratings is therefore linked to the
stability of the composite band-gap states. We have con-
firmed dynamical stability of band-gap solitons by nu-
merical integration of the vector dynamical model (1).
153902-4
Figure 5 shows an example of the stationary propagation
of an odd gap soliton [family (a) and (b) in Fig. 4] in an
induced nonlinear grating for the defocusing case. Both
components are initially perturbed by a random noise at
20% of their peak amplitude [Fig. 5(b)]. If the grating is
removed, the localized gap mode can no longer be sup-
ported by the defocusing nonlinearity and strongly dif-
fracts [Fig. 5(a)]. Being coupled to the lattice, the gap
mode generates a defect in the grating and coexists with it
as a dynamically stable composite state, which is clearly
robust to perturbations [Figs. 5(c) and 5(d)].

In conclusion, we have introduced novel composite
band-gap solitons where one of the components creates
a periodic nonlinear lattice which localizes the other
component in the form of a gap soliton. Nonlinear local-
ization of this kind should be generic to models of non-
linearly interacting multicomponent fields, where one of
the components can exist in a dynamically stable self-
modulated periodic state. Here, we considered a specific
example of a spatial nonlinear photonic structure induced
by optical beams in a photorefractive crystal. Another
example is the dynamical Bragg gratings for optical
pulses obtained through the cross-phase modulation in
highly birefringent fibers [13].
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