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Vortex Phase Diagram in Rotating Two-Component Bose-Einstein Condensates
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We investigate the structure of vortex states in rotating two-component Bose-Einstein condensates
with equal intracomponent but varying intercomponent-coupling constants. A phase diagram in the
intercomponent-coupling versus rotation-frequency plane reveals rich equilibrium structures of vortex
states. As the ratio of intercomponent to intracomponent couplings increases, the interlocked vortex
lattices undergo phase transitions from triangular to square, to double-core lattices, and eventually
develop interwoven ‘‘serpentine’’ vortex sheets with each component made up of chains of singly
quantized vortices.
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close to the radial trapping frequency, so a vast experi-
mentally accessible parameter regime remains to be ex-

time-dependent coupled GP equations, starting from
arbitrary trial wave functions without vorticity. The
A system described by a multicomponent order pa-
rameter can excite various exotic topological defects.
There has been great interest in the study of such topo-
logical defects, which have been explored extensively in
condensed matter systems such as anisotropic superfluid
3He [1]. This study is also closely related with some
problems in superconductors of UPt3 and Sr2RuO4 which
are thought to have non-s-wave symmetry [2] and high-
energy physics and cosmology [3]. Dilute atomic Bose-
Einstein condensates (BECs) offer another superior
testing ground to investigate the physics of exotic topo-
logical defects because they are free from impurities and
well controlled by optical techniques. A trapped BEC in a
rotating potential generates quantized vortices which are
topological defects characteristic of superfluidity, and
several groups have succeeded in observing ordered vor-
tex lattices [4]. While many interesting phenomena have
been found in single-component BECs [4], a rich variety
of static and dynamic phenomena are expected to occur
in a system of rotating two-component BECs consisting,
for example, of two different hyperfine spin states of
atoms [5]. This system is characterized by three coupling
constants denoted by C11 and C22 (for intracomponents)
and C12 (for intercomponent) [6–10]. In this Letter, we
report equilibrium structures of vortex states in two-
component BECs with C11 � C22 � C but varying values
of C12 and the rotation-frequency based on the numerical
analysis of the Gross-Pitaevskii equation.

Mueller and Ho studied the vortex lattice structure of
two-component BECs by assuming the lowest Landau
level approximation and a perfect lattice [11]. They pro-
posed a phase diagram on the lattice structure and found
that, as C12=C is increased, the system undergoes a con-
tinuous structural change from triangular to square latti-
ces. Kita et al. discussed the lattice structure in F � 1
spinor BECs [12]. However, both studies assume the
fast rotation limit where the rotation-frequency is very
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plored. When there is no rotation, it is known that we
obtain miscible condensates as the ground state for
C12=C < 1, while for C12=C > 1 the two components
phase separate [6,7,10]. In the presence of rotation, our
numerical analysis reveals a rich variety of vortex states
which have eluded analytic treatments. In particular, we
find that for C12=C � 1 double-core vortex lattices or
interwoven serpentine vortex sheets become stabilized
for a considerable range of rotation frequency; these
states can therefore be observed in current experimental
situations.

The equilibrium solutions of two-component BECs in a
frame rotating with the angular velocity � � �ẑz are
obtained by solving the time-independent coupled
Gross-Pitaevskii (GP) equations for the condensate
wave functions �hi �

P
j�1;2Cijj�jj

2��i � �i�i (i �
1; 2) [6–10] where hi � ��m12=mi�r

2 � Vi � ��= �!!�Lz
with the reduced mass m12 � m1m2=�m1 �m2� and the
harmonic potential Vi � �mi!2

i =4m12 �!!2�r2. Here, length
and energy are measured in units of bho �

��������������������
�h=2m12 �!!

p
and

�h �!! � �h�!1 �!2�=2, respectively. In this work, the
numerical calculation is done in the two-dimensional
x-y space. The wave functions are normalized asR
dxdyj�i�x; y�j

2 � 1 and, then, the intracomponent
and intercomponent-coupling constants are written as
Cii � 8��m12=mi�N2D

i aii and Cij � 4�N2D
j a12 �i � j�

with the corresponding s-wave scattering lengths a11,
a22, a12 (assumed to be positive), and the particle num-
bers N2D

i per unit length along the z axis.
For simplicity, the number of the parameters is re-

duced by assuming a11 � a22, m1 � m2, !1 � !2 � �!!,
and N2D

1 � N2D
2 � N2D. For the typical experimental

conditions �!?; !z� � 2��8; 5� Hz and N � 106, the
values of the intracomponent coupling constants are
chosen as C11 � C22 � C � 2000. In the numerical
calculation, the equilibrium solutions are found by the
norm-preserving imaginary time propagation of the
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propagation continues until the fluctuation in the norm of
the wave function becomes smaller than 10�8.

With a fixed value C � 2000, we investigate the equi-
librium solutions for various values of two free parame-
ters � � C12=C and ��� � �= �!!. The obtained vortex
structure is summarized in the phase diagram of Fig. 1.
Because the centrifugal potential overcomes the har-
monic trapping potential for ��� > 1, the upper limit of
the rotation frequency is set by ��� � 1. Previous studies
have revealed that two nonrotating components with
equal mass and equal intracomponent scattering length
overlap completely for � < 1, and phase separate for
� > 1 [6,7,10]. This criterion is reflected on the structure
of vortex states, as explained below. In general, there are
many metastable states in rotating two-component BECs;
they are obtained by the numerical simulation starting
from different wave functions. Here we discuss some
characteristic features of vortex structures.

In the region � < 1, two types of the regular vortex
lattices are obtained as the equilibrium state. For � � 0,
where two components are not interacting, the formula-
tion is equivalent to that of one component, thereby
triangular vortex lattices are formed [13]. As � increases,
the positions of vortex cores in one component gradually
shift from those of the other component and the triangu-
lar lattices are distorted. Eventually, the vortices in each
component form a square lattice rather than a triangular
one. The � dependence on the stable region of a square
lattice was studied in Ref. [11] in the high rotation limit
��� ’ 1. As seen in Fig. 1, however, that stable region

depends not only on � but also sensitively on ���. An
FIG. 1. ���-� phase diagram of the vortex states in rotating
two-component BECs. The classification of the structure is
made by the following symbols: 4, triangular lattice; �, square
lattice; �, stripe or double-core vortex lattice; �, vortex sheet.
Because of the continuous change from triangular to square,
their boundary is shown by using both 4 and �. The plots at
��� � 1 show the results of Ref. [11]. The shaded region shows

the analytically obtained region of vortex sheets; the solid
curve represents b � �p and the dashed curve 2b � RTF (see
text).
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increase in rotation frequency also causes the transition
from triangular to square lattices; in Figs. 2(a) and 2(b),
the two-dimensional density profiles of the condensates
with � � 0:7 are shown for ��� � 0:6 and ��� � 0:75.
We find that the two vortex lattices are interlocked
in such a manner that a peak in the density of one
component is located at the density hole of the other, as
shown in Fig. 2(c). As a result, the total density �T �
j�1j

2 � j�2j
2 obeys the Thomas-Fermi distribution

applied to the overlapping two-component BECs with
solid-body rotation �T�r� � 2

����������
�=�

p
� �r2 with � �

�1� ���2�=C�1� ��. We have confirmed that this feature
holds for other parameter regimes.

Why is the square lattice stabilized in two-component
BECs? According to the energy functional of this system,
two components interact via the intercomponent interac-
tion C12j�1j

2j�2j
2; the velocity field in one component is

independent of that of the other. Therefore, such a feature
is determined only by the density distribution of the
condensates which minimizes the interaction energy.
We rewrite the interaction energy in terms of the total
density �T and the ‘‘spin’’ variable S � j�1j

2 � j�2j
2 as
FIG. 2. Two-dimensional density profile of the condensates
with C � 2000 and � � 0:7 for (a) ��� � 0:6 and (b) ��� � 0:75.
(c) Cross section of (b) along the y � 0 line. The total density
�T � j�1j

2 � j�2j
2 and the Thomas-Fermi density profile are

also shown.
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Eint �
R
drC��1� ���2

T � �1� ��S2�=4. A larger �
makes a smoother total density �T more favorable in
order to reduce the first term of Eint. This results in the
shift of the positions of vortex cores of each component.
Then, the last term ofEint can be interpreted effectively as
the interaction energy between spins in the Ising model
[14]. Spin-up components correspond to the density peaks
of �1 at the vortex cores of �2, and vice versa for spin-
down components. When the coefficient 1� � is positive,
the interaction between spins is antiferromagnetic, which
makes a square lattice stabilized (because the triangular
lattice could be frustrated). The antiferromagnetic nature
is made more pronounced as the interlocking of vortex
lattices becomes stronger with � and the number of vor-
tices increase with ���.

As � exceeds unity, the system enters a ferromagnetic
phase. Then, the condensates undergo phase separation to
spontaneously form domains having the same spin com-
ponent [14]. Concurrently, vortices of the same compo-
nent begin to overlap at �� 1. Figure 3 shows typical
solutions at � � 1. In Fig. 3(a), vortices of each compo-
nent are overlapped in lines, and each condensate density
forms a stripe pattern [15]. While this structure can also
be derived if one assumes a perfect lattice [11], we find
that its energy is nearly degenerate with that of Fig. 3(b).
For the same parameters, we can obtain another equilib-
rium state called ‘‘double-core vortex lattice’’ in Fig. 1,
where a vortex lattice of component 2 is made by pairs of
vortices with the same circulation; vortices in component
1 surround those pairs. Therefore, various metastable
structures will appear in this parameter region.

For the strongly phase-separated region � > 1, the
density peaks of the same spin component, at which the
other-component vortices are located, merge further, re-
FIG. 3. The density profiles of the condensates �1 and �2 for
��� � 0:7 and � � 1. The profiles (a) and (b) are obtained by the

numerical simulation starting from different trial wave func-
tions. The energy deference between these states is !E� 10�5.

150406-3
sulting in the formation of vortex sheets; a typical ex-
ample is shown in Fig. 4(a). Singly quantized vortices line
up in sheets, and the sheets of component 1 and 2 are
interwoven alternately from the center to the outward.
Figure 4(b) shows that each superfluid velocity vi �i �
1; 2� jumps at the vortex sheet, following approximately
the velocity of solid-body rotation. In the region � > 1,
even though the value of � is changed, the total density is
fixed by the Thomas-Fermi distribution with � � 1.

The stationary vortex sheet has been observed in rotat-
ing superfluid 3He-A [16], where vortices are bounded to a
topologically stable domain wall soliton across which the
unit vector representing the direction of the orbital an-
gular momentum of the Cooper-pair faces oppositely. As
discussed in superfluid 3He-A, the equilibrium distance
between the sheets of component 1 and component 2 is
determined by the competition between the surface ten-
sion $ of the domain wall and the kinetic energy of the
superflow [16]. In order to estimate that distance in two-
component BECs, we consider a simple model shown in
Fig. 4(c). In this model, each velocity is assumed to be
constant between the vortex sheets of the same compo-
nent; the value of vi increases by 2 ���b across every sheet.
The total density �T � j�1j

2 � j�2j
2 is constant, and the

domain boundary with the penetration depth ��<b� is
FIG. 4. (a) The density profiles of the condensates for ��� �
0:75 and � � 1:1. The vortex sheets are made up of chains of
singly quantized vortices whose positions are marked by �.
(b) The density profile of �1 and �2 in the radial component,
and the corresponding velocity profile. The velocity of solid-
body rotation is shown by the dotted line. (c) Schematic
illustration of the model of the vortex sheet state.
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approximated by the linear profile. We calculate the free
energy F � E��Lz in the range 0< r< 2b, the sheet
distance b being determined so as to minimize F per unit
area. First, the penetration depth � is determined by
minimizing the surface tension $ of a single domain
wall with respect to � [10], which is the sum of the
quantum pressure energy Eqp=2�b � ��T=2�� and
the interaction energy in the overlap region Eint=2�b �

��� 1���2
T=12; we thus obtain �p �

������������������������������
6=C��� 1��T

p
.

Then, the surface tension is written as $ �
�3=2
T

������������������������
C��� 1�=6

p
. Second, the flow energy per area (in

rotating frame) is given by �1=4�b2�
R
2b
0 d2r

P
i�i�vi �

���r�2=2 � 29�T ���2b2=768, where b� �p is assumed.
Thus, the free energy per unit area is written as

F

4�b2
�

29�T ���2b2

768
�

2$
b

�
C�2

T

2
: (1)

Minimizing this energy with respect to b, one obtains
b � �768$=29 ���2�T�1=3 � �768=29 ���2�p�

1=3. By using
the Thomas-Fermi density at r � 0 with � � 1 as the
value of �T , the sheet spacing b / ��� 1�1=6�1�
���2�1=12= ���2=3 is consistent with that of numerical solu-

tions; for example, for parameters used in Fig. 4, we
obtain b � 3:09bho. The vortex sheet is expected in the
region b > �p and 2b < RTF �

����������������
2=

��������
��

pp
, as shown in

the shaded region in Fig. 1. When 2b > RTF, i.e., b be-
comes comparable with the condensate size, the clear
structure of sheets vanishes.

Finally, we comment on what structure could be
observed in actual experimental conditions. The two-
component BECs realized in JILA is a mixture of the
states j1;�1i and j2; 1i of 87Rb [5]. This mixture has
the scattering lengths which have the same order,
a11:a22:a12 � 1:0:94:0:97, i.e., �� 1 for equal particle
numbers. Therefore, lattices with partially overlapping
vortices of the same component, as shown in Fig. 3, are
expected to be observed. The MIT group has observed the
phase separation of a mixture of 23Na BECs with j1; 0i
and j1; 1i state [17], which has � � 1 (a11:a22:a12 �
1:1:035:1:035). In addition, a mixture of 41K and 87Rb
BECs reported recently [18] lies deeply in a phase-
separate region. The vortex sheets should therefore be
observed at high rotation frequencies.

In conclusion, we reveal a rich phase diagram of vortex
states in rotating two-component BECs, even in the re-
stricted parameter space ��; ����. The structure of a vortex
lattice is shown to depend sensitively on the rotation
frequency. In particular, we find new phenomena such
as double-core vortex lattices and interwoven serpentine
vortex sheets. Use of different atomic masses and intra-
component interactions will realize a coexistence system
of vortices with different vortex-core sizes; such a situ-
ation may change the lattice structure shown in this
150406-4
Letter. We plan to study a more detailed phase diagram
and effects of the internal Josephson coupling on the
vortex states.
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