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Global Stationary Phase and the Sign Problem
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We present a computational strategy for reducing the sign problem in the evaluation of high
dimensional integrals with nonpositive definite weights whose logarithms are analytic. The method
involves stochastic sampling with a positive semidefinite weight that is adaptively and optimally
determined during the course of a simulation. The optimal criterion, which follows from a variational
principle for analytic actions S�z�, is a global stationary phase condition that the average gradient of the
phase ImS along the sampling path vanishes. Numerical results are presented from simulations of a
model adapted from statistical field theories of classical fluids.
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We begin by considering a displacement of the original
integration path along the real x axis, C1, to a new

ties of interest. One approach to alleviate this difficulty
would be to choose y � y�, where y� is the imaginary
A familiar problem that arises in the context of lattice
gauge theory [1], quantum chemistry [2], correlated elec-
tron physics [3], and equilibrium field theories of classical
fluids [4] is the evaluation of integrals of the form

Z �
Z
C1

dx exp��S�x��; (1)

where the path of integration C1 is the real axis and the
action (or effective Hamiltonian) S�x� is complex. In the
cases of primary interest x 2 Rn is an n vector providing
a discrete representation (lattice sites or spectral ele-
ments) of one or more classical or quantum fields. The
dimension n is typically large, of order 103–106. Here we
use one-dimensional notation, although the formalism is
primarily intended for cases of n � 1.

For real S�x�, there is a variety of powerful methods
available for evaluating Z, including Monte Carlo and
(real) Langevin simulations [5]. However, in the case of
complex S � SR 	 iSI, the integrand is not positive semi-
definite, so the Monte Carlo method is not immediately
applicable. Simulations can be carried out using the posi-
tive semidefinite weight exp��SR�, but then an oscillatory
phase factor of exp��iSI� must be included in the com-
putation of averages [6]. The rapid oscillations of this
factor (i.e., the ‘‘sign problem’’), which become more
pronounced for large n, can dramatically slow conver-
gence in such simulations. Alternatively, a ‘‘complex
Langevin’’ simulation technique has been devised in
which the field variables x are extended to the complex
plane and a Langevin trajectory prescribed for the pur-
pose of generating Markov chains of states [7]. Un-
fortunately this method is not guaranteed to converge
and pathological behavior has been noted for specific
models [8,9]. In the present Letter we describe a new
simulation approach that is useful for reducing the sign
problem in integrals of the form of Eq. (1), where S�z� is
an analytic function of the complex n vector z � x	 iy.
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parallel path Cy defined by z � x	 iy; xj 2 ��1;1�,
in which y 2 Rn is an arbitrary displacement of C1 along
the imaginary axis. Note that the displacement yj need
not be uniform in j for the n > 1 case. Provided S�z� is
analytic in the rectangular strip bounded by C1 and Cy
and j exp��S�R	 iy��j ! 0 for R ! 1, it follows that

Z �
Z
Cy

dz exp��S�z�� �
Z
Cy

dx exp��S�x	 iy��; (2)

and the resulting Z is independent of the choice of y. Upon
decomposing S into real and imaginary parts SR�x; y� 	
iSI�x; y�, Z can be rewritten as

Z � Zy

Z
Cy

dxPy�x� exp��iSI�x; y��; (3)

where Zy �
R
Cy
dx exp��SR�x; y�� and Py�x� is a normal-

ized, positive semidefinite, probability distribution for a
random variable x at the fixed value of y:

Py�x� � exp��SR�x; y��=Zy: (4)

It follows that the average of an analytic observable f�x�
can be evaluated alternatively from the formulas

hf�x�i � Z�1
Z
C1

dx exp��S�x��f�x�

�
hexp��iSI�x; y��f�x	 iy�iy

hexp��iSI�x; y��iy
; (5)

where hh�x�iy �
R
Cy
dxPy�x�h�x� denotes an average with

probability weight Py�x�.
It is the second expression in Eq. (5) that is of

interest in the present Letter. A poor choice of y will
lead to significant oscillations in the phase factor
exp��iSI�x; y�� as x is stochastically varied along the
sampling path Cy in a simulation. This would drive both
numerator and denominator in Eq. (5) to zero and dra-
matically slow or prevent convergence of average quanti-
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component of a saddle point z� defined by S0�z�� � 0. The
deformed integration path Cy� would then be a line pass-
ing through the saddle point parallel to the real axis. If
this path happened to be a constant phase (steepest as-
cent) path locally around the saddle point, then the phase
oscillations would be reduced on trajectories that remain
close to the saddle point [10]. In general, however, path
Cy� will not be a constant phase path, even in the close
vicinity of z�. A local analysis about each saddle point,
costing O�n2� in computational effort, can be used to
identify proper constant phase paths. However, in typical
problems where field fluctuations are strong, significant
weight is given to trajectories that are not localized
around saddle points.

The essence of our method is a global strategy for
selecting an optimal displacement y, denoted �yy. To this
end, we introduce a ‘‘generating’’ function (functional)

G�y� � ln
Z
Cy

dx exp��SR�x; y��: (6)

Invoking the Cauchy-Riemann (CR) equations, it is
straightforward to show that the first derivative of G�y�
is given by

@G�y�
@yj

�

�
@
@xj

SI�x; y�
�
y
; (7)

where xj and yj are components of the real n vectors x and
y. The second derivative follows from repeated applica-
tion of the CR equations and an integration by parts
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; (8)

which is the sum of two positive definite forms. It follows
that G�y� is manifestly a convex function for any y.

We now claim that the ‘‘optimal’’ choice y � �yy is such
that

@G�y�
@yj

������� �yy
�

�
@
@xj

SI�x; �yy�
�
�yy
� 0: (9)

Evidently such a point would be a local minimum of G�y�.
Moreover, it implies that SI has vanishing gradients on
average along the sampling path C �yy. This condition
can be viewed as a global, rather than a local [10], sta-
tionary phase criterion and would seem to be an excellent
way to minimize the effect of phase fluctuations. Since
G�y� has a unique minimum, it follows that �yyj is homo-
geneous in j for bulk systems with translationally invari-
ant actions. The method evidently produces nontrivial
inhomogeneous �yy when applied to field theories in
bounded geometries.

It remains to discuss how to incorporate this optimal
choice of sampling path into a simulation algorithm. We
150201-2
propose the following ‘‘optimal path sampling’’ (OPS)
algorithm:

(i) Initialize vectors x and y � y�k� with k � 0.
(ii) Carry out a stochastic simulation in x at fixed y�k� to

generate a Markov chain of x states of length M. Py�k� �x�
should be used as a statistical weight for importance
sampling. The simulation method could be the
METROPOLIS Monte Carlo algorithm, its ‘‘smart’’ or ‘‘hy-
brid’’ variants [11], or a real Langevin technique.

(iii) Evaluate G�y�k�� and @G�y�k��=@y�k� by averaging
over the x configurations accumulated in the M-state
simulation. Update y to approach �yy by making a steepest
descent step

y�k	1� � y�k� � �
@G�y�k��

@y�k�
;

where � is an adjustable relaxation parameter. Al-
ternatively, the accumulated information on G�y� could
be used to carry out approximate line minimizations,
which would permit conjugate gradient updates from
y�k� to y�k	1�.

(iv) Repeat steps (ii) and (iii) for k � 1; 2; . . . until the
sequence of y�k� converges to within some prescribed
tolerance to �yy. The simulation has now equilibrated.

(v) Carry out a long stochastic simulation (‘‘production
run’’) with statistical weight P �yy�x�.

(vi) Compute averages over the simulated states ac-
cording to Eq. (5) with y � �yy.

Evidently, the parameters M and � can be adjusted to
accelerate the ‘‘equilibration’’ period.

Our OPS method has some similarities to (and was
inspired by) the complex Langevin (CL) simulation tech-
nique. In that approach, one generates a Markov chain of
states in the complex plane by integrating the Langevin
equations [7]

@x
@t

� �Re
dS
dz

	 ��t�; (10)

@y
@t

� �Im
dS
dz

; (11)

where ��t� is a real Gaussian white noise with h��t�i � 0
and h�j�t��k�t

0�i � 2��t� t0��jk. Ensemble averages
hf�x�i are computed as time averages of f�x	 iy� over
the chain of states. Under conditions where the CL
method converges, we have observed that y drifts to a
nearly constant value that is not associated with any
saddle point y�. Equation (11) reduces approximately in
this case to hImdS=dziy � 0, which is equivalent to the
condition (9). The OPS technique is also distinct from the
‘‘stationary phase Monte Carlo’’ methods, which apply
filtering and sparse sampling methods to suppress phase
oscillations [2,12]. These methods are effective but ap-
parently have no variational basis.

Before providing a numerical example of the OPS
method, it is illustrative to see how our global stationary
150201-2
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phase criterion works in a simple one-dimensional ex-
ample

A i�t� �
1

2�

Z 1

�1
dx exp�i�x3=3	 tx��; (12)

which is a representation of the Airy function. In this case
S�x; t� � �i�x3=3	 tx� and Eq. (9) leads to �yy2 � hx2i �yy �
t � 0. This equation has a single root, corresponding to
the minimum of G�y�, that yields �yy�t�. For example,
�yy�1� � 1:191 49. Of particular interest is the effect of
the optimal displacement on phase oscillations. In Fig. 1
we plot Refexp��iSI�x; y; t��g vs x at t � 1 for y � 0 (no
shift) and y � �yy (optimal). Clearly the optimal shift
dramatically suppresses phase oscillations over the inter-
val �2 & x & 2. The global stationary phase criterion
has no effect outside this interval, because P �yy�x� decays
supraexponentially there as � exp��x2 �yy� and so no sta-
tistical weight is given to jxj * 2.

As a numerical test of the OPS method, we have
carried out simulations of the model

S�x� �
Xn
j�1

��x2j 	 �xj	1 � xj�2 � � exp��ixj��; (13)

which can be viewed as a lattice field theory for the one-
dimensional classical Yukawa fluid in the grand canonical
ensemble (� is a measure of interaction strength and � is
the activity). For the case of n > 1, periodic boundary
conditions are applied. The model has a saddle point z�j �
iy�j that lies on the imaginary axis and is homogeneous in
the index j (as well as an inhomogeneous ‘‘1D crystal-
like’’ saddle point). Its location is given by the solution of
� exp�y�j � 	 2�y�j � 0. The optimal displaced path �yyj is
homogeneous in j and is given by the solution of
� exp� �yyj�hcosxji �yy 	 2� �yyj � 0. We see that y� and �yy are
coincident under conditions (� � 1) where the random
variable x fluctuates closely about the saddle point x� � 0.
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FIG. 1. Variation of the phase factor of the Airy integrand
Refexp��iSI�x; y; 1��g with x for y � 0 (dashed line) and y �
�yy � 1:191 49 (solid line).
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In the strongly fluctuating regime (� � 1), hcosxji �yy will
be dramatically reduced, resulting in a large shift of �yy
away from y�. These expectations are borne out in nu-
merical simulations of the model.

We have carried out a conventional METROPOLIS Monte
Carlo (MC) simulation [i.e., Eq. (5) with y � 0], OPS, and
CL simulations of the model with action Eq. (13). The
results were obtained from runs with a total of 107 MC
cycles or Langevin steps, a time step of 0.001 in the case
of CL, and parameters M � 1000, � � 0:05 for OPS. In
Fig. 2 we compare the results obtained from OPS and CL
simulations with n � 1 and � � 1. The top panel (a)
shows hzi as a function of �, while the bottom panel (b)
displays the real and imaginary parts of the ‘‘sign’’
hexp��iSI�i. In contrast to OPS, CL fails to
converge, or converges very slowly, for � & 0:15.
The conventional MC method also converges, but the
average sign is approximately 0.8, as opposed to �1
shown by the OPS.
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FIG. 2. Comparison between OPS and CL simulations.
(a) The average of z � x	 iy as a function of the parameter
� for the model of Eq. (13) with n � 1 and � � 1. Open and
filled symbols are results, respectively, from CL and OPS. Stars
denote the average of the imaginary part y, and triangles the
average of the real part x. The full line is the exact solution, the
dashed line the corresponding saddle point. (b) The average
sign exp��iSI� for the same parameters as in (a). The con-
vention for the symbols is the same as in (a). Error bars are
comparable to the symbol sizes if not explicitly shown.
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FIG. 3. Comparison between OPS and the conventional MC
method. (a) The average of z � x	 iy as a function of the
parameter � for the model of Eq. (13) with n � 10 and � � 1.
Open and filled symbols are results, respectively, from the MC
method and OPS. Stars, triangles, and the dashed curve as in
Fig. 2. (b) The average sign exp��iSI� for the same parameters
as in (a). At small � the real part of the sign in the MC method
rapidly approaches zero, and the averages fail to converge.
Error bars are comparable to the symbol sizes if not explicitly
shown.
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It is often observed [3] that the sign in conventional
MC simulations decreases exponentially with n, causing a
breakdown of the method. This is illustrated for the
present model in Fig. 3 with parameters n � 10 and
� � 1. The conventional MC method fails to converge
for � & 0:1 in contrast to OPS. Moreover, the real part
of the sign is strongly suppressed in the MC results, even
at large values of �. The sign problem is evidently
strongly suppressed, if not eliminated entirely for this
model in OPS.

The OPS method is applicable to any field theory with
an action S�z� that is analytic throughout a domain of
z relevant to numerical simulations. This includes
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the important cases of classical fluids in the grand ca-
nonical ensemble and path integral formulations of time-
dependent quantum chemical problems. Other situations
including fluids in the canonical ensemble, strongly cor-
related electrons, and lattice gauge theories are charac-
terized by analytic exp��S�, but with zeros along the real
axis and hence logarithmic singularities in S. It is unclear
at present whether extensions of the OPS technique will
prove fruitful for such systems. Finally, we note that the
displaced paths considered here were parallel to the real
axis. Generalization of the method to optimize both the
displacement and shape of the path could be even more
powerful.

In summary, we have identified a variational principle
that permits a global stationary phase analysis of inte-
grals of arbitrary dimension in which the logarithm of
the integrand is an analytic function. We expect that this
technique will have important implications for analytical
and numerical investigations of field theories in the com-
plex plane.
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