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Mechanism for Spiral Wave Breakup in Excitable and Oscillatory Media
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We study spiral wave breakup using a Fitzhugh-Nagumo—type system. We find that spiral wave
breakup can occur near the core or far from it in both excitable and oscillatory regimes. There is a
faraway breakup scenario in both excitable and oscillatory media that depends on long wavelength
modulation modes. We observed three distinct scenarios, including one that involves breakup that does
not develop into turbulence. However, we find that the mechanisms behind these three scenarios are the
same: they are caused by the interaction between the dispersion relation and the asymptotic behavior of
the modulation mode. The difference in phenomenology is due to the asymptotic behavior of the

modulation mode.
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The transition from a regular pattern to spatiotemporal
chaos in extended systems remains a challenging problem
in nonlinear dynamics [1]. In particular, spiral wave
instability in reaction-diffusion systems is a robust phe-
nomenon observed in both experiments and numerical
simulations [2-9]. Phenomenologically, two different
breakup scenarios have been documented in experiments
and numerical simulations: Doppler instability [3,4] and
the convective (absolute) Eckhaus instability [5—8]. The
first instability occurs in excitable media, and the spiral
waves break up near the spiral core. When the stable
spiral wave becomes unstable via Hopf bifurcation, the
spiral tip meanders, and the Doppler effect becomes so
large that adjacent waves interact and break. This sce-
nario provides a possible mechanism for cardiac fibril-
lation [4].

In the second instability, which appears in oscillatory
media, spiral wave breakup happens far from the spiral
core, and the region near the core remains unchanged,
while the wave propagating outwards from the spiral core
becomes subject to a longitudinal instability (Eckhaus
instability). This scenario has been observed in experi-
ments on the Belousov-Zhabotinsky (BZ) reaction [5];
the authors attribute it to the presence of a convective
Eckhaus instability. Recently, this scenario was explained
by the appearance of a global mode that asymptotes to the
absolute Eckhaus instability in large systems [6]. It has
been suggested that near-core breakup is characteristic of
excitable media, while breakup far from the core should
only happen in excitable media [7].

In this Letter, we investigate the break up of spiral
waves leading to defect-mediated turbulence. To do that,
a 2D Fitzhugh-Nagumo—type model is considered [9].
The model consists of the following equations:
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with no-flux boundary conditions. In simulations, we
use Euler integration with a space step dx = dy = 0.45
and a time step df = 0.03. Similar results were ob-
tained with smaller space and time steps. Generally, we
take the parameter a in the model to be constant (¢ =
0.84) and we change b from negative to positive, chang-
ing the corresponding local dynamics from oscillatory (if
b < 0) to excitable (if b > 0).

To study the spiral wave dynamics, we record the tip
trajectory, then measure the outer diameter (R) of the tip
orbit (defined by the isoline # = 0.3) when the spiral wave
behavior is stable or meandering. When b = —0.045
[Fig. 1(a)], it is well known that the system first encoun-
ters a Hopf bifurcation around € = 0.045. Before that, the
spiral wave is stable; beyond that, the spiral wave me-
anders. Consistent with the Hopf bifurcation, note that
the R curve follows an approximate square root relation
for ¢ from 0.45 to 0.553. After that, the dynamics
changes dramatically, and spiral wave breakup occurs
for € € (0.553,0.056). Although the usual view is that
spiral wave breakup occurs far from the core in oscilla-
tory media, here the spiral wave breaks up near the core
region [Fig. 1(b)]. Further increasing &, there is a tran-
sition back to a meandering spiral wave. In this regime, R
is much larger than before breakup but still much smaller
than the size of the system. As a result, we can exclude
the possibility that the spiral wave breakup in e €
(0.553,0.056) is caused by the collisions between the
core and the boundary. Another spiral wave breakup
regime occurs when € > 0.77. As opposed to the previous
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FIG. 1. Three scenarios of spiral wave breakup. The size of
the system is 200 X 200 for the snapshots (a) The diameter R of
the orbit of the spiral tip as a function of & at b = —0.045;
(b) snapshot of spatial pattern at b = —0.045, ¢ = 0.0555,
near-core breakup of spiral is shown; (c) snapshot at b =
—0.045, ¢ = 0.078, faraway breakup of spiral wave is shown;
(d) R vs € at b = 0.05; (e) R vs € at b = 0.001 [10]; (f) novel
breakup scenario is shown, for » = 0.001 and & = 0.0705.

breakup regime, here the spiral wave breaks up far away
from the core. [Fig. 1(c)].

For the excitable regime, we take b = 0.05, and again
study R as a function of & [Fig. 1(d)]. As opposed to the
oscillatory regime [Fig. 1(a)], here only one transition to
breakup is observed. The spiral wave breaks up near the
core, as in Fig. 1(b). What does the dynamics look like
when we take the value of b between —0.045 and 0.05? To
explore this, we take b = 0.001 (still in the excitable
regime). Figure 1(e) shows the corresponding R curve.
In Fig. 1(e) there are still two breakup regimes, but the
first breakup regime where the spiral wave breaks up near
the core has shifted markedly toward the second breakup
regime. If we further increase b towards 0.05, we find that
the first breakup region finally merges with the second
region, just as in Fig. 1(d). The second breakup region is
much more interesting. According to the usual view, the
spiral wave should break up near the core because it is in
the excitable regime. However, note in Fig. 1(e) that this
second breakup regime occurs at large &, corresponding
to the faraway breakup regime in Fig. 1(a). To resolve this
paradox, we plot a snapshot where the first breakup begins
in Fig. 1(f). Note that the spiral wave breaks up several
wavelengths away from the core, but the breakup does not
develop into a chaotic sea as in Fig. 1(c) or to defect-
mediated turbulence as in Fig. 1(b). Instead a novel pat-
tern is formed, in which the spatial pattern is divided into
two parts: inside is a rotating spiral wavelet with tail, and
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outside is a distorted target wave. The tail of the inside
wave collides with the back of the outer wave from time
to time; the new breakup creates a new tail and a new
target wave front. Further increasing & beyond a critical
value, the outside distorted target wave yields to the
chaotic sea. As opposed to the case in Fig. 1(c), the
coherent spiral wavelet cannot sustain itself forever. It
will be replaced by other spiral wavelets grown out of the
chaotic sea.

Phenomenologically, the three scenarios of spiral
wave breakup are quite different, but the mechanisms
behind them are the same. In the faraway breakup sce-
nario, a global mode was proposed and validated by
experiment [8], but is there a global mode in the near-
core breakup scenario? To investigate this problem, we
study a system whose size is 400 X 400. We calculated
the power spectra for different sites when b = 0.05 and
e = 0.0684 [Figs. 2(a)-2(c)]. The core locates around
(200, 200). Note that there are several discrete peaks in
Fig. 2(a). After some simple manipulations, we find that
there are only two fundamental frequencies f; = 0.199
and f, = 0.0238. The other peaks are linear combina-
tions of f; and f,. The primary frequency f; is the
frequency of the stable spiral wave. f, is the secondary
frequency caused by the Eckhaus instability which modu-
lates the spiral wave. Similar primary and secondary fre-
quencies are seen independently of location in Figs. 2(b)
and 2(c); hence, these plots verify the existence of a
global mode after the stable spiral wave loses its stability.
These power spectra differ in the amplitudes of the
various modes: the peak of the second frequency near
the core [Fig. 2(a)] is much higher than that far away
from the core [Fig. 2(c)]. The power spectrum also shows
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FIG. 2. Power spectra are shown for b = 0.05, ¢ = 0.0684
for different locations (a) site (200, 210); (b) site (200, 300);
(c) site (200, 390); (d)—(f) strength of the Eckhaus mode ver-
sus the spatial location along a line which crosses the core
region: (d) b = —0.045, ¢ = 0.077; (e) b = 0.05, ¢ = 0.0684;
(f) b = 0.001, e = 0.0698.
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that the Eckhaus instability which generates the modula-
tion mode of the spiral wave is absolute not convective.
This is because the continued presence of a modulation
mode, causing the second frequency, implies that the
mode is not convecting.

However, the existence of the second mode caused by
the Eckhaus instability does not guarantee the spiral wave
breakup; it just causes the spiral wave to meander. To
investigate the cause of breakup, we plot the amplitude
of f, along a line that crosses the core region for different
parameter values [Figs. 2(d)—2(f)]. Just prior to the far-
away breakup transition, the amplitude of f, increases
with the distance from the core [Fig. 2(d)]. By contrast, in
the near-core breakup scenario, the opposite is seen: f,
decreases with the distance from the core [Fig. 2(e)]. And
in the new, third breakup scenario, the amplitude of f,
first increases, then decreases. The change in the ampli-
tude of f, indicates that the modulations of the spiral
wave by the secondary mode are different at different
spatial locations. To see the consequence of this modula-
tion, we trace the change of the temporal period along the
same lines as in Figs. 2(d)-2(f). Here we define the
period as the time interval between successive maxima
of the variable u. The system was run for several thousand
periods after a transient. The maximum and the mini-
mum of the period ( p.« and pni,) at all sites along the
line are shown in Fig. 3. The parameters are chosen in the
meandering spiral wave regime, but close to the breakup
regime. Three distinct cases were found. (1) The faraway
breakup case: here, the maximum (or minimum) of pe-
riod increases (or decreases) with the distance away from
the core outside of the core area [Fig. 3(a)]. (2) The near-
core breakup case: here, contrary to the faraway breakup
case, Pmax (O pmin) reaches its maximum (or minimum)
around the spiral wave core (the size of the core R = 25
[Figs. 1(d) and 3(b)]. (3) A novel breakup pattern: this is
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FIG. 3. The maximum period and the minimum period mea-
sured as a function of location. (a) b = —0.045, & = 0.078;
(b) b = 0.05, ¢ = 0.0684; (c) b = 0.001, £ = 0.0698.
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similar to the near-core breakup case, but the location
where the maximum (or minimum) of p... (Of pmin)
reaches its maximum (or minimum) is far away from
the core [R = 18 in Fig. 1(e)].

It is important to note that the period of the propagat-
ing wave cannot take an arbitrary value, due to the
dispersion relation. In excitable media, it is well known
that there exists a minimum period due to the refractory
part of the local dynamics, below which conduction block
leads to failure of wave propagation [4]. However, to our
knowledge, what the dispersion relation is in oscillatory
media is an unknown problem. Here we use three proto-
cols to study the dispersion relation: (1) wave propagation
in a 1D version (dx = 0.39, dt = 0.015, the size of the
system is 1600); (2) planar waves propagating through a
2D square region; (3) target waves in a 2D system with
no-flux boundary conditions. The first two protocols do
not consider the effect of curvature and the rightmost
boundary obeys a no-flux boundary condition. We drive
the leftmost site(s) with sinusoidal forcing. In the third
case, the effect of curvature is taken into consideration,
and we drive the center of the system with sinusoidal
forcing. After the transient, a steady planar (or target)
wave could be established downstream for a certain range
of driving frequencies. The wave number can be obtained
by spatial Fourier analysis. The results are shown in Fig. 4.
When the driving frequency becomes too large or too
small, the planar (or target) wave cannot propagate at the
period of the driving force. Actually, there exist two
critical driving frequencies; beyond either of them, the
1D system goes to chaotic behavior.

Now, based on the results in Figs. 3 and 4, we can
explain why the spiral wave breaks up in different ways.
In the near-core breakup case, the modulation mode of
the spiral wave reaches its maximum amplitude around
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FIG. 4. The dispersion relation for b = —0.045, ¢ = 0.07.
Open circles are for planar waves in a 2D system, solid squares
are for a 1D system, and open triangles are for a target wave.
There is no difference between the planar waves in 1D and 2D
systems. The effect of curvature on the target waves is just to
shift the curve down to lower frequencies.
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the core. Correspondingly, pun.x (O pnin) reaches its
maximum (or minimum). The increase of ¢ leads to the
increase of p... and decrease of p.;,. In the excitable
system, the decrease of p,,;, with € eventually leads p i,
to become smaller than the minimum period permitted
by the dispersion relation. In the oscillatory medium,
generally both the increase of p.,, and the decrease of
Pmin With € at a given b could violate the dispersion
relation and lead to spiral wave breakup. In the model
studied here, the violation of p;, leads to the breakup. In
the near-core case, once the breakup occurs around the
core region, the interaction between the defects due to the
breakup and the core is strong enough to make the defects
move away, and more defects will be generated around
them, leading finally to defect-mediated turbulence. In
the novel case, breakup begins when the dispersion rela-
tion is violated. The first breakup occurs only in a thin
annulus because the dispersion relation still holds outside
the annulus on both sides. Because the breakup occurs far
away from the core, the interaction between the core and
the defect is negligible. As a result, we see a breakup but
no spatiotemporal chaos. Only when the width of the
annulus becomes large enough that more defects can be
generated in the annulus can we see a chaotic sea due to
the interaction between the defects surrounding the short-
lived spiral wavelet. Because of the outward propagation
of the wave arm emitted by the core, here the down-
stream chaotic sea is caused by convection. In the faraway
breakup case, the modulation mode becomes stronger
with the distance away from the core. This results in
different phenomena in different system sizes: we can
see no breakup for small systems, while a chaotic sea
surrounding the laminar state is observed for large sys-
tems [see Fig. 3(a)]. In this case, once the dispersion
relation is violated at a certain distance from the core,
the propagation downstream must violate the dispersion
relation, leading finally to the chaotic sea. In this sense, it
is different from the chaotic sea surrounding the laminar
state in the novel case; this faraway scenario yields an
absolute chaotic sea.

The modulation mode caused by the Eckhaus instabil-
ity is of the long wavelength type. The snapshot of the 2D
system is shown in Fig. 5(a). The period for each site
during a small time section (¢, t + pp,) is recorded in
Fig. 5(b). The variation of the period in 2D space shows
another spiral wave that signifies the spatial character of
the modulation mode. Compared with Fig. 5(a), the long
wavelength in Fig. 5(b) is obvious. Actually, the pattern
shown in Fig. 5(b) is the so-called overspiral addressed in
some experiments [4].

In conclusion, we investigated an Fitzhugh-Nagumo—
type system that can behave like an excitable or an
oscillatory system by the proper choice of parameters.
We find that whether the spiral wave undergoes faraway
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FIG. 5 (color online). Superspiral wave is shown for b =
—0.02, e = 0.07. (a) The wave pattern of the original system,
(b) the variation of the period. The spatial character of the
modulation mode is clearly observed.

breakup or near-core breakup cannot be decided by
knowing whether the system is in its excitable or oscil-
latory regimes. Both scenarios can occur in either type
medium. We find that the long wavelength modulation
mode is sustained in both excitable and oscillatory media.
Phenomenologically, we found that there is a third sce-
nario of spiral wave breakup, in addition to near-core
breakup and faraway breakup, which consists of a broken
spiral wave surrounded by a target pattern. However, we
found that the mechanisms supporting these three scenar-
ios are the same; they are caused by the interaction
between the dispersion relation and the asymptotic be-
havior of the modulation mode. The difference in phe-
nomenology is caused by the specific asymptotic behavior
of the modulation mode: whenever the modulation mode
causes the spiral wave to violate the dispersion relation,
wave breakup occurs.
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