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Quasi-Spin-Wave Quantum Memories with a Dynamical Symmetry
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For the two-mode exciton system formed by the quasi-spin-wave collective excitation of many �
atoms fixed at the lattice sites of a crystal, we discover a dynamical symmetry depicted by the
semidirect product algebra SU�2��h2 in the large N limit with low excitations. With the help of the
spectral generating algebra method, we obtain a larger class of exact zero-eigenvalue states adiabati-
cally interpolating between the initial state of photon-type and the final state of quasi-spin-wave
exciton-type. The conditions for the adiabatic passage of dark states are shown to be valid, even with the
presence of the level degeneracy. These theoretical results can lead to the proposal of a new protocol for
implementing quantum memory robust against quantum decoherence.
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atom is fixed at a lattice site of a crystal. The most recent
experiment of the ultraslow group velocity of light in a
crystal of Y2SiO5 [13] proposes the possibility of imple-

For convenience we introduce the notation j �
�axjx; ayjy; azjz� to denote the position of the jth site
where au is the length of the crystal cell along the
Recent progress in quantum information has stimu-
lated the development of new concept technologies,
such as quantum computation, quantum cryptography,
and quantum teleportation [1]. The practical implemen-
tation of these quantum protocols relies on the construc-
tion of both quantum memories (QMEs) and quantum
carriers (QCAs) free of quantum decoherence. While
photons can be generally taken as quantum carriers,
quantum memories should correspond to localized sys-
tems capable of storing and releasing quantum states
reversibly. Moreover, to control the coherent transfer of
information, there should be a time dependent mecha-
nism for turning on and turning off the interaction be-
tween QME and QCA at appropriate instants of time.

A single atom in a cavity QED system [2] seems to
satisfy the above mentioned requirements for QME using
the Raman adiabatic passage mechanism [3]. To achieve
the strong coupling required for a practical QME a very
elegant method has been proposed recently [4–6],
where ensembles of �-type atoms are used to store and
transfer the quantum information of photons by the col-
lective atomic excitations through electromagnetically
induced transparency (EIT) [7]. Some experiments [8,9]
have already demonstrated the central principle of this
technique — the group velocity reduction. The recent
success in experiment also shows the power of such an
atomic ensemble QME [10] and motivates additional
theoretical work [11]. But there still exists the decoher-
ence problem. An ensemble consists of many moving
atoms and atoms in different spatial positions may expe-
rience different couplings to the controlling external
fields. This results in decoherence in quantum informa-
tion processing [12]. To avoid the spatial-motion induced
decoherence, one naturally considers the case that each �
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menting robust quantum memories by utilizing the solid
state exciton system.

In this Letter, we study a system consisting of the
quasi-spin-wave collective excitations of many �-type
atoms. In this system, most spatially fixed atoms stay in
the ground state, the two quasispin collective excitations
to two excited states behave as two types of bosons, and
thus a two-mode exciton system forms. We prove that in
the large N limit with low excitations, this excitonic
system possesses a hidden dynamical symmetry de-
scribed by the semidirect product SU�2��h2 of quasispin
SU�2� and the exciton Heisenberg-Weyl algebra h2. With
the help of the spectrum generating algebra theory [14]
based on SU�2��h2, we can construct the eigenstates of
the two-mode exciton-photon system including the col-
lective dark states as a special class. Since the external
classical field is controllable, the quantum information
can be coherently transferred from the cavity photon to
the exciton system and vice versa. Therefore, the two-
mode quasi-spin-wave exciton system can serve as a
robust quantum memory.

The model system we consider consists of a crystal
with N lattice sites as shown in Fig. 1. There are N three-
level atoms of the �-type with the excited state jai, the
relative ground state jbi, and the metastable lower state
jci. They interact with two single-mode optical fields. The
transition from jai to jbi of each atom is approximately
resonantly coupled to a quantized radiation mode (with
coupling constant g and annihilation operator a), and the
transition from jai to jci is driven by an exactly resonant
classical field of Rabi frequency �. In recent years, for
the similar exciton system in a crystal slab with spatially
fixed two level atoms, both quantum decoherence and the
fluorescence process have been extensively studied [15].
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FIG. 2. Illustration of the second order process jbi ! jai !
jci induced by the classical and quantized lights.

FIG. 1. Configuration of the proposed quantum memory with
�-type atoms. (a) Located at lattice sites of crystal and
(b) resonantly coupled to a control classical field and a quan-
tized probe field.
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u direction and ju � 1; 2; � � � ,Nu for u � x; y; z. Then the
quantum dynamics of the total system is described by the
following Hamiltonian in the interaction picture:

H �ga
XN

j�1

exp�iKba � j��
j
ab

��
XN

j�1

exp�iKca � j��
j
ac � H:c:; (1)

where N � NxNyNz, and Kba and Kca are, respectively,
the wave vectors of the quantum and classical light fields.
The quasispin operators �j

�� � j�ijjh�j (�;� � a; b; c)
for � � � describe the transition between the levels of
jai, jbi, and jci.

The function of quantum memory is understood in
terms of its quantum state mapping technique. This mo-
tivates us to define the basic quantum states according to
the concrete form of the interaction. We denote by jvi �
jb1; b2; � � � ; bNi the collective ground state with all N
atoms staying in the same single particle ground state
jbi. It is obvious that, from the ground state jvi, the first
order and second order perturbations of the interaction
can create the one exciton quasispin wave states j1ai
and j1ci:

j1si �
1����
N

p
XN

j�1

eiKbs�jjb; b; � � � ; s
z}|{jth

; � � � ; bi; (2)

for s � a; c, respectively. The wave vector Kbc � Kba �
Kca is introduced to depict the second order transition
process from jbi to jci as shown in Fig. 2(a). Its collective
effect can be described by operator
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C �
1����
N

p
XN

j�1

e�iKbc�j�j
bc; (3)

which gives j1ci � Cyjvi. Correspondingly, the collec-
tive excitation from jbi to jai is described by

A �
1����
N

p
XN

j�1

e�iKba�j�j
ba; (4)

which gives j1ai � Ayjvi. In the large N limit with the
low excitation condition that there are only a few atoms
occupying jai or jci [16], the two-mode quasi-spin-wave
excitations behave as two bosons since in this case they
satisfy the bosonic commutation relations �A; Ay� � 1,
�C;Cy� � 1. In the same limit, it is worth pointing out
that �A;C� � 0 and �A;Cy� � �T�=N ! 0, thus these
quasi-spin-wave low excitations are independent of
each other.

In terms of these two-mode exciton operators, the
interaction Hamiltonian reads

H � g
����
N

p
aAy ��T� � H:c:; (5)

where the collective operators

T� �
XN

j�1

e�iKca�j�j
ca; T� � �T��y; (6)

generate the SU�2� algebra together with the third gen-
erator T3 �

PN
j�1��

j
aa � �j

cc�=2. It is very interesting to
observe that the exciton operators and the SU�2� genera-
tors span a larger Lie algebra. By a straightforward cal-
culation we obtain

�T�; C� � �A; �T�; A� � �C: (7)

Denote by h2 the Lie algebra generated by A, Ay, C, and
Cy. It then follows that �SU�2�; h2� � h2. This means that
in the large N limit with the low excitation condition the
operators A, Ay, C, Cy, T3, T�, and the identity 1 span a
semidirect product Lie algebra SU�2��h2. In the follow-
ing discussion we focus on this case unless otherwise
explicitly specified. Since the Hamiltonian H can be ex-
pressed as a function of the generators of SU�2��h2, one
says that the two-mode exciton system possesses a dy-
namical symmetry governed by the dynamical ‘‘group’’
(or dynamical algebra) SU�2��h2. The discovery of this
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dynamical symmetry leads us, by the spectrum generat-
ing algebra method [14], to find H-invariant subspaces, in
which one can diagonalize the Hamiltonian easily.

To that cause, we define

D � a cos�� C sin� (8)

with ��t� satisfying tan��t� � g
����
N

p
=��t�. It mixes the

electromagnetic field and collective atomic excita-
tions of quasispin wave. Evidently, �D;Dy� � 1 and
�D;H� � 0. Thus the Heisenberg-Weyl group h generated
by D and Dy is a symmetry group of the two-mode
exciton-photon system. We introduce the state j0i � jvi �
j0iL, where j0iL is the vacuum of the electromagnetic
field; we find Dj0i � 0, and it is an eigenstate of H with
zero eigenvalue. Consequently, a degenerate class of ei-
genstates of H with zero eigenvalue can be constructed
naturally as follows:

jdni � �n!��1=2Dynj0i: (9)

Physically, the above dressed state is canceled by the
interaction Hamiltonian and thus is called a dark state
or a dark-state polariton (DSP). A DSP traps the electro-
magnetic radiation from the excited state due to quantum
interference canceling. For the case with an ensemble of
free moving atoms, the similar DSP was obtained in
Refs. [4–6] to clarify the physics of the state-preserving
slow light propagation in EIT associated with the exis-
tence of quasiparticles.

Now starting from these dark states jdni, we can use
the spectrum generating algebra method to build other
eigenstates for the total system. To this end we introduce
the bright-state polariton operator

B � a sin�� C cos�: (10)

It is easy to check that �B;By� � 1 and �D;By� �
�D;B� � 0. Evidently �A;B� � �A;By� � 0; this amounts
to the fact that A commutes with C and Cy in the large N
limit with low excitations.What is crucial for our purpose
is the commutation relations �H;Qy

�� � �"Qy
� forQ� �

�1=
���
2

p
��A� B�, where " �

����������������������
g2N ��2

p
. Thanks to these

commutation relations we can construct the eigenstates

je�m; k; n�i � �m!k!��1=2Qym
� Qyk

� jdni; (11)

as the dressed states of the two-mode exciton system. The
corresponding eigenvalues are

E�m; k� � �m� k�";m; k � 0; 1; 2 � � � : (12)

We notice that for each given pair of indices �m; k�,
fje�m; k; n�ijn � 0; 1; 2; � � �g defines a degenerate set of
eigenstates. Physically the spectral structure of the
dressed two-mode exciton system resembles that of a
two-mode harmonic oscillator, but its energy level num-
ber is finite and each energy level possesses a very large
degeneracy.

The above equations show that there exists a larger
class S : fje�m;m; n�i � jd�m; n�ijm; n � 0; 1; 2; � � �g of
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states of zero eigenvalue E�m;m� � 0. They are con-
structed by acting Qy

�Q
y
� m times on jdni:

jd�m; n�i �
Xm

k�0

Ay2�m�k�By2k

2m�m� k�!k!
jdni: (13)

This larger degeneracy is physically rooted in the larger
symmetry group h2 generated by Qy

�Q
y
� and Q�Q�

together with D and Dy. The original quantum memory
defined by fjdni � jd�0; n�ig in Refs. [4–6] actually is a
special subset of the larger class.

Now we consider whether these states of zero eigen-
value can work well as a quantum memory by the adia-
batic manipulation [4–6]. The quantum adiabatic theorem
[17,18] for degenerate cases tells us that, under the adia-
batic condition

							
he�m; k; n�j@tjd�m; n�i

E�m; k�

							�
g

����
N

p
j _��t���t�j

"3
� 1; (14)

the adiabatic evolution of any degenerate system will keep
itself within the block S of dark states with the same
instantaneous eigenvalue zero. However, it does not for-
bid transitions within states in this block S, such as those
between fjdni � jd�0; n�ig and fjd�m; n�i�m � 0�g. So it is
important to consider whether there exists any dynamical
mechanism to forbid such transitions. Actually this issue
has been uniformly ignored in all previous studies even
for the degenerate set fjdnig.

We can generally consider this problem by defining the
zero-eigenvalue subspaces S�m�:fjd�m;n�ijn�0;1;2;���g,
S�0� � S. The complementary part of the direct sum
DS � S�0� � S�1� � � � � of all dark-state subspaces is
CS � fje�m; k; n�ijk � m; n � 0; 1; 2; � � �g in which
each je�m; k; n�i has a nonzero eigenvalue. Any state
j'�t�i �

P
m;nc

�m�
n �t�jd�m; n�i in S�m� evolves accord-

ing to

i
d
dt
c�m�n �t� �

X
m0;n0

Dm0n0
mn c

�m0�
n0 �t� � F�CS�; (15)

where F�CS�, which can be ignored under the adiabatic
conditions [17,18], represents a certain functional of the
complementary states and iDmn

m0n0 � hd�m0; n0�j@tjd�m; n�i.
Considering @�B � D and @�D � �B, we have
iDmn

m0n0 �
_��hd�m0; n0�j@�jd�m; n�i. The equation about

@�jd�m; n�i contains four terms: je�m; m � 1; n � 1�i
and je�m� 1; m; n� 1�i. This implies the exact result
hd�m0; n0�j@�jd�m; n�i � 0, showing there is indeed no
mixing among the dark states during the adiabatic evo-
lution. Viewed from the physical aspect, this can also be
understood as the adiabatic change of external parameters
does not lead the system to enter into the complementary
space CS. Notice that only for the nonadiabatic evolution
will the nonzero matrix elements he�m0; k; n0�j@�jd�m; n�i
be a cause for state mixing. The same physics has been
considered in the context of the Abelianization of the
non-Abelian gauge structure induced by an adiabatic
147903-3
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process [17,18]. This argument gives the necessary theo-
retical support for the practical realization of the original
scheme of quantum memory by Fleischhauer, Lukin, and
their collaborators [4–6].

Based on the above consideration, we thus claim that,
for each fixed m � 0, each subspace S�m� can work for-
mally as a quantum memory different from that in
Refs. [4–6]. We introduce the notation

jA;P; mi �
1

2mm!
�Ay2 � Py2�mj0i (16)

for P � a;C. Both the initial state jd�m; n�ij��0 �
jA;C; mi � jniL and the final state jd�m; n�ij��*=2 �
jniC � ��1�njA; a; mi have factorization structure. Thus
we can use the general initial state js�0�i �

P
ncn jniL of

single-mode light to record quantum information and
prepare the exciton in a paired state jA;C; mi. When
one rotates the mixing angle � from zero to *=2 by
changing the coupling strength ��t� adiabatically, the
total system will reach the final state jS�t�i �
�
P
ncnjniC� � jA; a; mi with the c-mode quasi-spin-wave

decoupling with the other parts. From the viewpoint of
quantum measurement the decoding process is then to
average over the states of the photon and the A exciton
and to obtain the pure state density matrix ,C �P
n;mcnc

�
mjnicchmj, which is the same as that for the initial

photons. Therefore, the above discussion suggests a new
protocol of storing quantum information when the decay
of the excited state is small enough during adiabatic
manipulation.

Before concluding, we address the fact that the indi-
vidual atoms in the generalized states jd�m; n�i have
excited state components, and therefore jd�m; n�i is not
totally dark in practice. If the excited state decays faster,
the generalized states jd�m; n�i would also decay during
slow adiabatic manipulation. This metastable nature leads
to an undesirable effect for memory application. We also
point out that the present treatment is valid only for the
low density excitation regime where the bosonic modes of
the quasi-spin-wave excitations can be used effectively.
Therefore the above down Fock state formally written as
AymCynj0i does not make sense when m or n is large. By
the mathematical duality, the situation with extremely
high excitation can be dealt with in a similar manner.
In fact, the serious difficulty lies only in the region where
the excitation is neither very low nor very high. In that
case, it turns out that the boson commutation relation of
the excitaton operators must be modified, for example, to
the q-deformed one [q � 1�O�1N�] [16]. Physically this
modification will cause quantum decoherence of the col-
lective degrees of freedom in the exciton system. Finally,
we emphasize that, though in our model system assumed
to be located at regular lattice sites as in a crystal, our
results (at least in mathematical formulation) remain
valid for an ensemble of atoms with random spatial
positions, provided that we can ignore the kinetic energy
terms (of the center of mass motion) of the atom. It seems
147903-4
that the ensemble of free atoms can function as quantum
memory of the same kind. However, the strict treatment
of the atomic ensemble based quantum memory should
include the kinetic energy terms of the atom center of
mass. The momentum transfer of atomic center of mass
can induce additional quantum decoherence [12]. In our
present protocol, this decoherence effect is partly over-
come by fixing atoms at lattice sites and thus neglecting
the kinetic energy terms.
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