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We present a classical protocol to efficiently simulate any pure-state quantum computation that
involves only a restricted amount of entanglement. More generally, we show how to classically simulate
pure-state quantum computations on n qubits by using computational resources that grow linearly in n
and exponentially in the amount of entanglement in the quantum computer. Our results imply that a
necessary condition for an exponential computational speedup (with respect to classical computations)
is that the amount of entanglement increases with the size n of the computation, and provide an explicit
lower bound on the required growth.
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ment in the system scales with the number n of qubits. standard measure entropy of entanglement [12].
Identifying nontrivial quantum dynamics that are effi-
ciently simulatable on a classical computer is important
in quantum many-body physics and in quantum informa-
tion science. On the one hand, our understanding of
quantum many-body dynamics is severely hindered by
the fact that, generically, the description of the state of n
interacting quantum systems requires O� exp�n�� parame-
ters, rendering the simulation of such systems intractable.
Consequently, those exceptional cases where an efficient
simulation is possible are a precious source of insight into
the physics of quantum many-body systems.

In quantum information [1], on the other hand, uncov-
ering simulatable quantum dynamics is of interest in
order to characterize the essential resources required for
genuine quantum computation. Clearly, if a quantum
device is to offer an exponential speedup with respect
to classical computations, then it must involve dynamics
that cannot be efficiently simulated classically. Thus by
detecting simulatable quantum dynamics we learn about
which systems may be used as a quantum computer.
Examples of quantum evolutions that can be efficiently
simulated are given by n qubits prepared in a computa-
tional-basis state and acted upon by gates from the
Clifford group, as established by the Gottesman-Knill
theorem [2], and by n bosonic (fermionic) modes evolv-
ing in a Gaussian state [3] (respectively, [4]). Also, Jozsa
and Linden [5] have recently shown how to efficiently
simulate any quantum computation on n qubits such that
their state factors, at all times, into a direct product of
states of at most a constant (i.e., independent of n) number
of qubits.

In this Letter we show that any quantum computation
with pure states can be efficiently simulated with a clas-
sical computer provided the amount of entanglement in-
volved is sufficiently restricted. Here entanglement is
quantified by a most natural (yet not standard) measure
and may involve all n qubits of the quantum computer in
a single, nonfactorizable state. More generally, we give an
upper bound on the computational speedup achievable by
a quantum computation, in terms of how the entangle-
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Thereby we (i) establish that entanglement is a necessary
(but in general not sufficient) resource for genuine quan-
tum computation with pure states and (ii) provide an
explicit lower bound for the entanglement required in
quantum computational speedups. (See also [6–8] for
related discussions on the case of mixed-state quantum
computations.) In addition, the simulation protocol pre-
sented here can be adapted as to apply to a class of
quantum many-body systems, including spin chains, as
explored in depth in a future contribution.

Measure of entanglement.—Let j�i 2 H �n
2 denote a

pure state of n qubits, A a subset of the n qubits, and B the
rest of them. The Schmidt decomposition (SD) [9] of j�i
with respect to the partition A:B reads

j�i �
X�A

��1

��j�
�A	
� i � j��B	

� i; (1)

where j��A	
� i (j��B	

� i) is an eigenvector of the reduced
density matrix ��A	 (��B	) with eigenvalue j��j

2 > 0,
and the Schmidt coefficient �� follows from the relation
h��A	

� j�i � ��j�
�B	
� i. The rank �A of �A is a natural

measure of the entanglement between the qubits in A
and those in B [10]. Therefore, we could use �,

� � max
A

�A; (2)

i.e., the maximal value of �A over all possible bipartite
splittings A:B of the n qubits, to quantify the entangle-
ment of state j�i. Here we mainly use the related entan-
glement measure E�,

E� � log2���; (3)

which fulfills the following appealing properties: (i) 0 �
E� � nlog2�d�=2 for j�i 2 H �n

d , with E� � 0 if and
only if j�i is a product (i.e., completely unentangled)
state [13]; (ii) E� is an entanglement monotone [11] that
decreases both under deterministic and stochastic local
manipulations of the system; (iii) E� is additive under
tensor products, E��� ��0� � E���� � E���

0�; and
(iv) in the bipartite setting E� upper bounds the more
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State decomposition.—Let us now consider the expan-
sion of j�i 2 H �n

2 in the computational basis,

j�i �
X1
i1�0

� � �
X1
in�0

ci1���in ji1i � � � � � jini: (4)

The key ingredient of our simulation protocol is a par-
ticular decomposition of coefficients ci1i2���in , namely,

ci1i2���in �
X

�1;���;�n�1

��1	i1
�1 ��1	

�1 �
�2	i2
�1�2�

�2	
�2 �

�3	i3
�2�3 � � ��

�n	in
�n�1 : (5)

This decomposition employs n tensors f��1	; � � � ;��n	g

and n� 1 vectors f��l	; � � � ; ��n�1	g, whose indices il
and �l take values in f0; 1g and f1; � � � ; �g, respectively.
Therefore, (5) reexpresses the 2n coefficients ci1i2���in of
(4) in terms of about �2�2 � ��n parameters, a number
that is linear in n and exponential in E�,

n qubit
state

$
n exp�E��

parameters:
(6)

For a generic state j�i, E� is of the order n and the de-
composition in terms of � ’s and �’s is uninteresting, for it
employs O�n exp�n�� parameters. However, notice that if
E� scales as O� log�n��, then only poly�n� parameters are
required, leading to an efficient description of j�i.

Decomposition (5) depends on the particular way qu-
bits have been ordered from 1 to n, and essentially con-
sists of a concatenation of n� 1 SDs. More explicitly, we
first compute the SD of j�i according to the bipartite
splitting of the systems into qubit 1 and the n� 1 remain-
ing qubits (from now on we omit the tensor product
symbol),

j�i �
X
�1

��1	
�1 j�

�1	
�1 ij�

�2���n	
�1 i (7)

�
X
i1;�1

��1	i1
�1 ��1	

�1 ji1ij�
�2���n	
�1 i; (8)

where in the last line we have expanded each Schmidt
vector j��1	

�1 i �
P

i1�
�1	i1
�1 ji1i in terms of the basis vectors

fj0i; j1ig for qubit 1. We then proceed according to the
following three steps: (i) we expand each Schmidt vector
j��2���n	

� i in a local basis for qubit 2,

j��2���n	
�1 i �

X
i2

ji2ij�
�3���n	
�1i2

i; (9)

(ii) then we write each (possibly unnormalized) vector
j��3���n	�1i2

i in terms of the at most � Schmidt vectors

fj��3���n	
�2 ig

�
�2�1 (i.e., the eigenvectors of ��3���n	) and the

corresponding Schmidt coefficients ��2	
�2 ,

j��3���n	�1i2
i �

X
�2

��2	i2
�1�2�

�2	
�2 j�

�3���n	
�2 i; (10)

(iii) finally we substitute Eq. (10) in Eq. (9) and the latter
in Eq. (8) to obtain
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j�i �
X

i1;�1;i2;�2

��1	i1
�1 ��1	

�1 �
�2	i2
�1�2�

�2	
�2 ji1i2ij�

�3���n	
�2 i: (11)

Iterating steps (i)–(iii) for the Schmidt vectors
j��3���n	

�2 i; j��4���n	
�3 i; � � � ; j��n	

�n�1i, one can express state
j�i as in (5).

A useful feature of the description of j�i in terms of
the �’s and �’s of Eq. (5) is that it readily gives the SD of
j�i according to �1 � � � l	:��l� 1� � � � n	, i.e., the bipartite
splitting A:B such that A contains the first l qubits and B
the rest of them,

j�i �
X
�l

��l	
�l j�

�1���l	
�l ij���l�1����n	

�l i: (12)

Indeed, it can be checked by induction over l that

j��1���l	
�l i �

X
�1;���;�l�1

��1	i1
�1 ��1	

�1 � � ��
�l	il
�l�1�l ji1 � � � ili; (13)

whereas by construction we already had that

j���l�1����n	
�l i�

X
�l�1;���;�n

��l�1	il�1
�l�l�1 �����n�1	

�n�1 �
�n	in
�n�1 jil�1 ���ini:

(14)

Finally, insight into the meaning of decomposition (5)
may be gained by defining �2 unnormalized states
j’�l	

��0 i �
P

i�
�l	i
��0 jii for qubit l and expanding j�i as a

linear combination of �n�1 product states,

j�i �
X

�1;���;�n�1

j’�1	
�1 i�

�1	
�1 j’

�2	
�1�2i � � ��

�n�1	
�n�1 j’

�n	
�n�1i; (15)

where the sum over �’s is what accounts for the correla-
tions between qubits [14].

Update of the decomposition.—The following lemmas
explain how to update the description of state j�i when a
one-qubit gate or a two-qubit gate (acting on consecutive
qubits) is applied to the system. Remarkably, the compu-
tational cost of the updating is independent of the total
number n of qubits and grows in � only as a polynomial of
low degree.

Lemma 1. Updating the �’s and �’s of state j�i after a
unitary operation Uacts on qubit l involves transforming
only ��l	. The incurred computational cost is of O��2�
basic operations.

Proof. In the SD according to the splitting
�1 � � � �l� 1�	:�l � � � n	, a unitary operation U on qu-
bit l does not modify the Schmidt vectors for part
�1 � � � �l� 1�	 and therefore ��j	 and ��j	 �1 � j � l� 1�
remain the same. Similarly, by considering the SD for the
splitting �1 � � � l	:��l� 1� � � � n	, we conclude that also
��j	 and ��j�1	 �l� 1 � j � n� remain unaffected.
Instead, ��l	 changes according to

�0�l	i
�� �

X
j�0;1

Ui
j�

�l	j
��8�;� � 1; � � � ; �: (16)

That is, for each value of � and �, a small matrix
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multiplication is required, leading to a total of O��2�
basic operations.

Lemma 2. Updating the �’s and �’s of state j�i after a
unitary operation V acts on qubits l and l� 1 involves
transforming only ��l	, ��l	, and ��l�1	. This can be
achieved with O��3� basic operations.

Proof. In order to ease the notation we regard j�i as
belonging to only four subsystems,

H � J �H C �HD �K: (17)

Here, J is spanned by the � eigenvectors of the reduced
density matrix

��1����l�1�	 �
X
�

j�ih�j; j�i � ��l�1	
� j��1����l�1�	

� i; (18)

and, similarly, K is spanned by the � eigenvectors of the
reduced density matrix

���l�2����n	 �
X
�

j�ih�j; j�i � ��l�1	
� j���l�2����n	

� i; (19)

whereas H C and H D correspond, respectively, to qubits
l and l� 1. In this notation we have

j�i �
X�

�;�;��1

X1
i;j�0

��C	i
�� ���

�D	j
�� j�ij�i; (20)

and, reasoning as in the proof of Lemma 1, when applying
unitary V to qubits C and D we need update only
��C	; �;��D	. We can expand j�0i � Vj�i as

j�0i �
X�

�;��1

X1
i;j�0

�ij
��j�ij�i; (21)

where

�ij
�� �

X
�

X
kl

Vij
kl�

�C	k
�� ���

�D	l
�� : (22)

By diagonalizing �0�DK	,

�0�DK	 � trJCj�
0ih�0j

�
X

j;j0;�;�0

�X
�;i

h�j�i�ij
����

ij0

��0 ��
�
jj�ihj0�0j; (23)

we obtain its eigenvectors fj�0�DK	
� ig, which we can ex-

pand in terms of fjj�ig to obtain �0�D	 ,

j�0�DK	
� i �

X
j;�

�0�D	j
�� jj�i: (24)

The eigenvectors of �0�JC	 and �0 follow then from

�0
�j�

0�JC	
� i � h�0�DK	

� j�0i (25)

�
X

i;j;�;�

��0�D	j
�� ���ij

��h�j�ij�ii; (26)

and by expanding each j�0�JC	
� i,
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j�0�JC	
� i �

X
i�

�0�C	i
�� j�ii; (27)

we also obtain �0�C	. In the above manipulations, the
largest tensors contain O��2� components. The most ex-
pensive manipulations are the following: in Eq. (22), for
each value of � and � the sum over � requires summing
up O��� terms, leading to a total of O��3� basic opera-
tions; similarly O��3� operations are required in Eq. (23)
and in Eq. (26); finally, the same cost applies to the
diagonalization of �0�JC	 , a matrix of �2 elements, so
that the overall update can be done with O��3� basic
operations.

Simulation protocol.—We consider a pure-state quan-
tum computation using n qubits, initially in state j0i�n,
and consisting of poly�n� one- and two-qubit gates and a
final measurement in the computational basis. The simu-
lation protocol works as follows. We use tensors �’s and
�’s to store the initial state j0i�n and update its description
as the gates are applied [15]. Recall that decomposition
(5) assumes a specific ordering of the qubits. In order to
update j�i according to a two-qubit gate between non-
consecutive qubits C and D, we first simulate O�n� swap
gates between adjacent qubits to bring C and D together.
Notice that a swap gate does not modify �. The update of
the decomposition after an arbitrary two-qubit gate has
been applied can thus be always achieved with at most
O�npoly���	 basic operations. From the �’s and �’s it is
possible to compute, at a cost growing as poly���, the
outcome probabilities of a measurement on qubit l and the
new �’s and �’s for the postselected states of the remain-
ing n� 1 qubits. Thus simulating the outcome probabili-
ties of the final measurement on the computational basis
requires npoly��� basic operations. We can therefore state
the main results of the Letter.

Theorem. A pure-state quantum computation on n qu-
bits and consisting of poly�n� elementary gates can be
classically simulated with a cost in computational time
and memory space given by poly�n� exp�E��, where E�
denotes the maximal value of E���� achieved during the
computation,

n qubit
computation

$
poly�n� exp�E��

time and memory:
(28)

Corollary. If E� scales at most as log�n�, then a clas-
sical simulation can be accomplished with poly�n� com-
putational resources.

Discussion.—The above results establish a clear con-
nection between the cost of classically simulating a
pure-state quantum computation and the amount of en-
tanglement involved in the computation. The amount of
entanglement determines the computational cost incurred
when using the specific protocol described in this Letter.
In particular, the corollary states that any slightly en-
tangled quantum computation, such that E� is upper
bounded by k log�n� for some k > 0, can be efficiently
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simulated in a classical computer. On the other hand, also
some highly entangled quantum computations can be
simulated efficiently [2–4] through other simulation
schemes. In other words, a small amount of entanglement
is a sufficient condition for an inexpensive classical simu-
lation, but not a necessary one.

The above considerations translate into a lower bound
on the amount of entanglement that is produced dur-
ing a pure-state quantum computation leading to a com-
putational speedup. Indeed, it follows from the theorem
that if a strictly exponential speedup is to occur, then E�
must grow linearly in n. Similarly, a computational
speedup of, say, exp�

���
n

p
�, requires that E� grow at least

as
���
n

p
, and so on.

The tools presented in this Letter can also be applied to
simulate continuous-time dynamics in certain quantum
many-body systems, as further discussed in a future
contribution. Roughly, time is divided into small steps
so as to approximate the continuous-time evolution by a
sequence of small gates, and then the present simulation
protocol is used to simulate the sequence of gates. As
above, the computational cost of a given simulation de-
pends on the amount of entanglement in the system.
Efficient simulations correspond to a very restricted sub-
set of states [16] and one could have expected not to find
physical systems of interest where the simulation protocol
is efficient. However, it turns out that the amount of
entanglement in many one-dimensional many-body sys-
tems, such as quantum spin chains at zero temperature
[17], is typically sufficiently small so that an efficient
classical simulation is possible.

Thus, the uncovered connection between entanglement
and the cost of classical simulations does not only con-
tribute to our understanding of the essential ingredients
of quantum computation, but it also stimulates the devel-
opment of new techniques for the study of realistic quan-
tum many-body phenomena.
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