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We demonstrate theoretically that the shot noise produced by a tunnel barrier in a two-channel
conductor violates a Bell inequality. The nonlocality is shown to originate from entangled electron-hole
pairs created by tunneling events—without requiring electron-electron interactions. The degree of
entanglement (concurrence) equals 2�T1T2�

1=2�T1 � T2�
�1, with T1; T2 � 1 the transmission eigenval-

ues. A pair of edge channels in the quantum Hall effect is proposed as an experimental realization.
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FIG. 1. Schematic description of the method to produce and
detect entangled edge channels in the quantum Hall effect. The
thick black lines indicate the boundaries of a two-dimensional
electron gas. A strong perpendicular magnetic field B ensures
that the transport near the Fermi level EF takes place in two
edge channels, extended along a pair of equipotentials (thin
solid and dashed lines, with arrows that give the direction of
propagation). A split gate electrode (shaded rectangles at the
center) divides the conductor into two halves, coupled by
tunneling through a narrow opening (dashed arrow, scattering
matrix S). If a voltage V is applied between the two halves, then
there is a narrow energy range eV above EF in which the edge
channels are predominantly filled in the left half (solid lines)
and predominantly empty in the right half (dashed lines).
Tunneling events introduce filled states in the right half (black
dots) and empty states in the left half (open circles). The
entanglement of these particle-hole excitations is detected by
the violation of a Bell inequality. This requires two gate elec-
trodes to locally mix the edge channels (scattering matrices
rier could be used in principle for our purpose, and the
UL;UR) and two pairs of contacts 1; 2 to separately measure the
current in each transmitted and reflected edge channel.
The controlled production and detection of entangled
particles is the first step on the road towards quantum
information processing [1]. In optics this step was taken
long ago [2], but in the solid state it remains an experi-
mental challenge. A variety of methods to entangle elec-
trons have been proposed, based on quite different
physical mechanisms [3]. A common starting point is a
spin-singlet electron pair produced by interactions, such
as the Coulomb interaction in a quantum dot [4–6], the
pairing interaction in a superconductor [7–10], or Kondo
scattering by a magnetic impurity [11]. A very recent
proposal based on orbital entanglement also makes use
of the superconducting pairing interaction [12].

It is known that photons can be entangled by means of
linear optics using a beam splitter [13–15]. The electronic
analog would be an entangler that is based entirely on
single-electron physics, without requiring interactions.
But a direct analogy with optics fails: Electron reservoirs
are in local thermal equilibrium, while in optics a beam
splitter is incapable of entangling photons from a thermal
source [16]. That is why previous proposals [11,17] to en-
tangle electrons by means of a beam splitter start from a
two-electron Fock state, rather than a many-electron
thermal state. To control the extraction of a single pair of
electrons from an electron reservoir requires strong Cou-
lomb interaction in a tightly confined area, such as a semi-
conductor quantum dot or carbon nanotube [3]. Indeed, it
has been argued [18] that one cannot entangle a spatially
separated current of electrons from a normal (not-
superconducting) source without recourse to interactions.

What we propose here is an altogether different,
interaction-free source of entangled quasiparticles in the
solid state. The entanglement is not between electron pairs
but between electron-hole pairs in a degenerate electron
gas. The entanglement and spatial separation are realized
purely by elastic scattering at a tunnel barrier in a two-
channel conductor. We quantify the degree of entangle-
ment by calculating how much the current fluctuations
violate a Bell inequality.

Any two-channel conductor containing a tunnel bar-
0031-9007=03=91(14)=147901(4)$20.00 
analysis which follows applies generally. The particular
implementation described in Fig. 1 uses edge channel
transport in the integer quantum Hall effect [19]. It has
the advantage that the individual building blocks have
already been realized experimentally for different pur-
poses. If the two edge channels lie in the same Landau
level, then the entanglement is between the spin degrees
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of freedom. Alternatively, if the spin degeneracy is not
resolved by the Zeeman energy and the two edge channels
lie in different Landau levels, then the entanglement is
between the orbital degrees of freedom. The beam splitter
is formed by a split gate electrode, as in Ref. [20]. In Fig. 1
we show the case that the beam splitter is weakly trans-
mitting and strongly reflecting, but it could also be the
other way around. To analyze the Bell inequality an extra
pair of gates mixes the orbital degrees of freedom of the
outgoing states independently of the incoming states.
(Alternatively, one could apply a local inhomogeneity
in the magnetic field to mix the spin degrees of freedom.)
Finally, the current in each edge channel can be measured
separately by using their spatial separation, as in Ref. [21].
(Alternatively, one could use the ferromagnetic method to
measure spin current as described in Refs. [3,22].)

It is easiest to understand what happens if the beam
splitter does not mix the edge channels. An electron can
tunnel from either Landau level into the empty right half
of the system, leaving behind a hole in the filled left half
with the same Landau level index. This correlation en-
tangles the electron-hole pair. Let us assume, for the
simplest example, that each edge channel tunnels with
the same probability T. The resulting state is a super-
position of the vacuum state j0i (all states filled at the left
and empty at the right) with weight

�������������
1� T

p
and the

maximally entangled Bell pair �j""i � j##i�=
���
2

p
with

weight
����
T

p
. The role of the spin indices "; # is played by

the Landau level indices i � 1; 2. The first index in the ket
j""i refers to the hole at the left and the second index to the
electron at the right. We now generalize this elementary
example to an arbitrary scattering matrix, including
channel mixing and unequal transmission probabilities.

Electrons are incident on the beam splitter from the left
in a range eV above the Fermi energy EF. (The states
below EF are all occupied at low temperatures, so they do
not contribute to transport properties.) The incident state
has the form

j�ini �
Y

0<"<eV

ayin;1�"�a
y
in;2�"�j0i: (1)

The fermion creation operator ayin;i�"� excites the ith
channel incident from the left at energy " above the
Fermi level. Similarly, byin;i�"� excites a channel incident
from the right. Each excitation is normalized such that it
carries unit current. It is convenient to collect the creation
operators in two vectors ayin; b

y
in and to use a matrix

notation,

j�ini �
Y
"

�
ayin
byin

��
1
2�y 0
0 0

��
ayin
byin

�
j0i; (2)

with �y a Pauli matrix.
The input-output relation of the beam splitter is�

aout
bout

�
�

�
r t0

t r0

��
ain
bin

�
: (3)
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The 4� 4 unitary scattering matrix S has 2� 2 sub-
matrices r; r0; t; t0 that describe reflection and transmis-
sion of states incident from the left or from the right.
Substitution of Eq. (3) into Eq. (2) gives the outgoing state

j�outi �
Y
"

�ayoutr�yt
Tbyout � �r�yr

T�12a
y
out;1a

y
out;2

� �t�ytT�12b
y
out;1b

y
out;2�j0i: (4)

The superscript ‘‘T’’ indicates the transpose of a matrix.
To identify the entangled electron-hole excitations we

transform from particle to hole operators at the left of the
beam splitter: cout;i � ayout;i. The new vacuum state is
ayout;1a

y
out;2j0i. To leading order in the transmission matrix

the outgoing state becomes

j�outi �
Y
"

�
����
w

p
j�i �

�������������
1� w

p
j0i�; (5)

j�i � w�1=2cyout�b
y
outj0i; � � �yr�yt

T: (6)

It represents a superposition of the vacuum state and a
particle-hole state � with weight w � Tr��y.

The degree of entanglement of � is quantified by the
concurrence [23,24],

C � 2
�����������������
Det��y

q
=Tr��y; (7)

which ranges from 0 (no entanglement) to 1 (maximal
entanglement). Substituting Eq. (6) and using the unitar-
ity of the scattering matrix we find after some algebra that

C �
2

���������������������������������������������
�1� T1��1� T2�T1T2

p
T1 � T2 � 2T1T2

� 2
����������
T1T2

p
=�T1 � T2�

if T1; T2 � 1:

(8)

The concurrence is entirely determined by the eigenval-
ues T1; T2 2 �0; 1� of the transmission matrix product
tyt � 1 � ryr. The eigenvectors do not contribute. This
means, in particular, that channel mixing does not de-
grade the entanglement as long as the transmission eigen-
values remain unaffected. Maximal entanglement is
achieved if the two transmission eigenvalues are equal:
C � 1 if T1 � T2.

The particle-hole entanglement is a nonlocal correla-
tion that can be detected through the violation of a Bell
inequality [25,26]. We follow the formulation in terms of
irreducible current correlators in the frequency domain of
Samuelsson, Sukhorukov, and Büttiker [12], which in the
tunneling limit T1; T2 � 1 is equivalent to a more general
formulation in the time domain [18]. We will demonstrate
explicitly later on that we need the tunneling assumption.

The quantity Cij �
R
1
�1 dt�IL;i�t��IR;j�0� correlates

the time-dependent current fluctuations �IL;i in chan-
nel i � 1; 2 at the left with the current fluctuations �IR;j
in channel j � 1; 2 at the right. It can be measured di-
rectly in the frequency domain as the covariance of the
147901-2
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low-frequency component of the current fluctuations. At
low temperatures (kT � eV) the correlator has the gen-
eral expression [27]

Cij � ��e3V=h�j�rty�ijj
2: (9)

We need the following rational function of correlators:

E �
C11 � C22 � C12 � C21

C11 � C22 � C12 � C21
�

Tr�zrty�ztry

Trryrtyt
: (10)

By mixing the channels locally in the left and right arm
of the beam splitter, the transmission and reflection ma-
trices are transformed as r! ULr, t! URt, with unitary
2� 2 matrices UL;UR. The correlator transforms as

E�UL;UR� �
TrUy

L�zULrt
yUy

R�zURtr
y

Trryrtyt
: (11)

The Bell-CHSH (Clauser-Horne-Shimony-Holt) parame-
ter is [25,28]

E � E�UL;UR� � E�U0
L; UR� � E�UL;U0

R� � E�U0
L; U

0
R�:

(12)

The state is entangled if jEj > 2 for some set of unitary
matrices UL;UR;U0

L; U
0
R. By repeating the calculation of

Ref. [29] we find the maximum [30]

Emax � 2

�
1�

4�1�T1��1�T2�T1T2
�T1�T2�T2

1 �T2
2�

2

	
1=2

� 2�1�4T1T2�T1�T2�
�2�1=2 if T1;T2 � 1: (13)

Comparison with Eq. (8) confirms the expected relation
Emax � 2�1� C2�1=2 between the concurrence and the
maximal violation of the CHSH inequality [31]. As men-
tioned above, we need the tunneling limit: If T1 and T2
are not � 1 there is no one-to-one relation between Emax

in Eq. (13) and C in Eq. (8).
As a final consistency check we consider the effect of

dephasing [32]. Dephasing is modeled by introducing
random phase factors in each edge channel, which
amounts to the substitutions

UL !UL

�
ei#1 0
0 ei#2

�
; UR !UR

�
ei 1 0
0 ei 2

�
: (14)

We average E�UL;UR� over the random phases, uniformly
in �0; 2%�, and find

E max �
2jTr�zrt

y�ztr
yj

Trryrtyt
� 2: (15)

So for strong dephasing there is no violation of the Bell
inequality jEj � 2. The intermediate regime between
weak and strong dephasing is more complex: There exists
a range of dephasing strengths for which E � 2 but the
electron-hole state is still entangled [33]. All of this is as
expected for entanglement of a mixed state [26].
147901-3
In conclusion, we have demonstrated theoretically that
a tunnel barrier creates spatially separated currents of
entangled electron-hole pairs in a degenerate electron
gas. Because no Coulomb or pairing interaction is in-
volved, this is an attractive alternative to existing pro-
posals for the interaction-mediated production of
entanglement in the solid state. We have described a
possible realization using edge channel transport in the
quantum Hall effect. There is a remarkable contrast with
quantum optics, where a beam splitter cannot create en-
tanglement if the source is in local thermal equilibrium.
This might well explain why the elementary mechanism
for entanglement production described here was not no-
ticed before.
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